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Abstract

Alice and Bob are playing a very simple game. Each of them starts with a pile of

n chips, and they take turns to remove 1 or 2 chips from their own pile randomly and

independently with equal probability. The first player who removes all chips from their

pile is the winner. In this paper, we find the winning probability for Bob and analyze

a new integer sequence. We also show that this game is highly disadvantageous to the

second player, which is counter-intuitive. Furthermore, we study several variations of

this game and determine the winning probability for Bob in each case.

1 Introduction

Take-away games are mathematical games that involve two players, who take turns to remove
items from a pile or multiple piles of objects. The winner is the first player achieving a certain
predefined goal.

Here is a classical single-pile take-away game: Alice and Bob take turns to remove 1 or 2
chips from a pile of finitely many chips, with Alice going first. Whoever removes the last chip
is the winner. Such a game and many variations are well-studied, for example by Schwenk
[4].

Another similar take-away game is the game of Nim. It involves multiple piles, and each
player may remove one or more chips from one of the piles. Again, whoever removes the
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last chip is the winner. Berlekamp, Conway, and Guy [2] as well as Bouton [3] thoroughly
discussed the strategies of this game.

In recent years, mathematicians revisited many well-studied deterministic problems in a
probabilistic setting. In this paper, we begin with a basic version of a probabilistic take-away
game: Alice and Bob each have a pile of n chips, and they take turns to remove 1 or 2 chips
from their pile, with Alice going first. Whether to remove 1 or 2 chips is decided by flipping
a fair coin. In other words, every move is independent, and the probability of removing 1 or

2 chips is
1

2
each. If there is only 1 chip left in the pile, then it is removed with probability

1 in the next move. The first player who removes all chips from their pile is the winner.
Equivalently, the game can be played in the following manner: Alice and Bob start with no
chips, and they take turns to collect 1 or 2 chips randomly and independently with equal
probability. The first person who collects at least n chips is the winner. This model of the
game avoids the complication when there is only 1 chip left, thus it is preferred and will be
adopted in this paper.

Let pn denote the probability that Bob wins by collecting at least n chips before Alice

does. At first glance, one may suggest that pn =
1

2
since the game seems to be fair to

both Alice and Bob. With more thought, one may realize that pn ≤ 1

2
since Bob is in a

disadvantageous position by having one fewer move half the time. It is also reasonable to

predict that pn converges to
1

2
as n goes to infinity. In this paper, we study precisely what

pn is for each n, and how this sequence behaves.
It is apparent that p1 = 0, since Alice wins on the first move. When n = 2, Bob can only

win if Alice collects 1 chip in her first move and Bob collects 2 in his first move, implying

that p2 =
1

4
. To study pn in general, we need some formal definitions.

LetX1, X2, . . . , Xn, Y1, Y2, . . . , Yn be independent identically distributed random variables

such that P(Xi = 1) = P(Xi = 2) = P(Yi = 1) = P(Yi = 2) =
1

2
, where Xi and Yi represent

the number of chips collected by Alice and Bob in the i-th move respectively.
Before we proceed to derive the formula, let us first study the initial terms of pn. As

mentioned, p1 = 0 and p2 =
1

4
. The following calculations find pn when n = 3, 4, 5, 6, and 7.

When n = 3,

p3 = P
(

(X1, X2) = (1, 1)
)

· P
(

(Y1, Y2) = (1, 2), (2, 1), or (2, 2)
)

=
1

4
· 3
4
=

3

16
.
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When n = 4,

p4 = P
(

(X1, X2) = (1, 1), (1, 2), or (2, 1)
)

· P
(

(Y1, Y2) = (2, 2)
)

+ P
(

(X1, X2, X3) = (1, 1, 1)
)

· P
(

(Y1, Y2, Y3) = (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), or (2, 1, 2)
)

=
3

4
· 1
4
+

1

8
· 5
8
=

17

64
.

When n = 5,

p5 = P
(

(X1, X2, X3) = (1, 1, 1), (1, 1, 2), (1, 2, 1), or (2, 1, 1)
)

· P
(

(Y1, Y2, Y3) = (1, 2, 2), (2, 1, 2), (2, 2, 1), or (2, 2, 2)
)

+ P
(

(X1, X2, X3, X4) = (1, 1, 1, 1)
)

· P
(

(Y1, Y2, Y3, Y4) = (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1), (1, 1, 2, 2), (1, 2, 1, 2),

or (2, 1, 1, 2)
)

=
1

2
· 1
2
+

1

16
· 7

16
=

71

256
.

When n = 6,

p6 = P
(

(X1, X2, X3) 6= (2, 2, 2)
)

· P
(

(Y1, Y2, Y3) = (2, 2, 2)
)

+ P
(

(X1, X2, X3, X4) = (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), or (2, 1, 1, 1)
)

· P
(

(Y1, Y2, Y3, Y4) = (1, 1, 2, 2), (1, 2, 1, 2), (1, 2, 2, 1), (2, 1, 1, 2), (2, 1, 2, 1), (2, 2, 1, 1),

(1, 2, 2, 2), (2, 1, 2, 2) or (2, 2, 1, 2)
)

+ P
(

(X1, X2, X3, X4, X5) = (1, 1, 1, 1, 1)
)

· P
(

(Y1, Y2, Y3, Y4, Y5) = (1, 1, 1, 1, 2), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1), (1, 2, 1, 1, 1), (2, 1, 1, 1, 1),

(1, 1, 1, 2, 2), (1, 1, 2, 1, 2), (1, 2, 1, 1, 2), or (2, 1, 1, 1, 2)
)

=
7

8
· 1
8
+

5

16
· 9

16
+

1

32
· 9

32
=

301

1024
.
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When n = 7,

p7 = P
(

(X1, X2, X3, X4) 6= (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1), and (2, 2, 2, 2)
)

· P
(

(Y1, Y2, Y3, Y4) = (1, 2, 2, 2), (2, 1, 2, 2), (2, 2, 1, 2), (2, 2, 2, 1), or (2, 2, 2, 2)
)

+ P
(

(X1, X2, X3, X4, X5) = (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1),

(1, 2, 1, 1, 1), or (2, 1, 1, 1, 1)
)

· P
(

(Y1, Y2, Y3, Y4, Y5) = (1, 1, 1, 2, 2), (1, 1, 2, 1, 2), (1, 1, 2, 2, 1), (1, 2, 1, 1, 2),

(1, 2, 1, 2, 1), (1, 2, 2, 1, 1), (2, 1, 1, 1, 2), (2, 1, 1, 2, 1),

(2, 1, 2, 1, 1), (2, 2, 1, 1, 1), (1, 1, 2, 2, 2), (1, 2, 1, 2, 2),

(1, 2, 2, 1, 2), (2, 1, 1, 2, 2), (2, 1, 2, 1, 2), or (2, 2, 1, 1, 2)
)

+ P
(

(X1, X2, X3, X4, X5, X6) = (1, 1, 1, 1, 1, 1)
)

· P
(

(Y1, Y2, Y3, Y4, Y5, Y6) = (1, 1, 1, 1, 1, 2), (1, 1, 1, 1, 2, 1), (1, 1, 1, 2, 1, 1), (1, 1, 2, 1, 1, 1),

(1, 2, 1, 1, 1, 1), (2, 1, 1, 1, 1, 1), (1, 1, 1, 1, 2, 2), (1, 1, 1, 2, 1, 2),

(1, 1, 2, 1, 1, 2), (1, 2, 1, 1, 1, 2), or (2, 1, 1, 1, 1, 2)
)

=
11

16
· 5

16
+

6

32
· 16
32

+
1

64
· 11
64

=
1275

4096
.

From these calculations, it seems that the denominator of pn is 4n−1. As for the nu-
merator, we observe that the sequence 3, 17, 71, 301, 1275 satisfies the recurrence relation
xn+2 = 4xn+1 + xn. However, when we use these two observations to project p100, we get
p100 ≈ 64.4353, which is absurd since pn ≤ 1. In other words, the pattern developed from
small cases is not helpful, so we need to generalize our calculations to obtain a formula
for pn. Nevertheless, the fact that these five terms satisfy an elegant recurrence relation is
interesting.

In Section 2, we present a complete solution for this basic probabilistic take-away game.
In Section 3, we discuss two integer sequences obtained from this result. In Section 4,
we extend our calculations to some general versions of this probabilistic take-away game.
Finally, in Section 5, we discuss some numerical computations and approximations of the
probabilities, as well as some open questions.

2 Results for the basic version

Let Sk =
∑k

i=1 Xi, and Tk =
∑k

i=1 Yi. It is clear that

pn =
n
∑

k=1

(

P(Sk < n) · P(Tk ≥ n and Tk−1 < n)
)

. (1)

Let sk = |{i : Xi = 2, 1 ≤ i ≤ k}|, and let tk = |{i : Yi = 2, 1 ≤ i ≤ k}|. Notice that
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sk + k = Sk and tk + k = Tk. Hence, equation (1) becomes

pn =
n
∑

k=1

(

P(sk < n− k) · P(tk ≥ n− k and tk−1 < n− (k − 1))
)

.

Note that P(sk < n − k) =
1

2k

n−k−1
∑

i=0

(

k

i

)

. Let hk =
n−k−1
∑

i=0

(

k

i

)

, so P(sk < n − k) =
hk

2k
.

Then

P(tk ≥ n− k and tk−1 < n− (k − 1)) = P(tk ≥ n− k)− P(tk−1 ≥ n− (k − 1))

=
1

2k

k
∑

i=n−k

(

k

i

)

− 1

2k−1

k−1
∑

i=n−(k−1)

(

k − 1

i

)

= 1− hk

2k
−
(

1− hk−1

2k−1

)

=
2hk−1 − hk

2k
.

Hence, pn =
n
∑

k=1

hk(2hk−1 − hk)

4k
. If we rearrange the terms, we have

pn =
2h1h0

4
+

n
∑

k=2

−4h2
k−1 + 2hk−1hk

4k
− h2

n

4n
= 1 +

n
∑

k=2

2hk−1(hk − 2hk−1)

4k
,

since h0 = 1, h1 = 2, and hn = 0. By adding the two expressions for pn obtained in the last
two lines and dividing the sum by 2, we have

pn =
1

2
− 1

2

n
∑

k=2

(2hk−1 − hk)
2

4k
=

1

2
− 1

2

n
∑

k=1

(2hk−1 − hk)
2

4k
. (2)

Finally, we have the following lemma.

Lemma 1. Let hk =
n−k−1
∑

i=0

(

k

i

)

. Then 2hk−1 − hk =

(

k

n− k

)

+

(

k − 1

n− k

)

.

Proof.

2hk−1 − hk = 2

n−(k−1)−1
∑

i=0

(

k − 1

i

)

−
n−k−1
∑

i=0

(

k

i

)

= 2
n−k
∑

i=0

(

k − 1

i

)

−
n−k−1
∑

i=1

((

k − 1

i

)

+

(

k − 1

i− 1

))

−
(

k

0

)

=

(

k − 1

0

)

+ 2

(

k − 1

n− k

)

+

(

k − 1

n− k − 1

)

−
(

k

0

)

=

(

k − 1

n− k

)

+

(

k

n− k

)

.
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Remark 2. The above proof of Lemma 1 is purely algebraic. Here is an alternate proof that
is more combinatorial.

2hk−1 − hk

2k
= P(tk ≥ n− k and tk−1 < n− (k − 1))

= P(Tk ≥ n and Tk−1 < n)

= P
(

Tk = n or (Tk−1 = n− 1 and Xk = 2)
)

= P
(

tk = n− k or (tk−1 = n− k and Xk = 2)
)

=

(

k

n−k

)

2k
+

(

k−1
n−k

)

2k−1
· 1
2
=

(

k

n−k

)

+
(

k−1
n−k

)

2k
,

which yields our desired result.

Applying Lemma 1 to equation (2), we obtain the following theorem.

Theorem 3. Alice and Bob take turns to collect 1 or 2 chips randomly and independently
with equal probability. The probability that Bob collects at least n chips before Alice is

pn =
1

2
− 1

2

n
∑

k=1

1

4k

((

k

n− k

)

+

(

k − 1

n− k

))2

.

It is worth noting that the summation can start from k =
⌈n

2

⌉

, since all the summands

are zero when k <
n

2
. However, we decide to start the summation from k = 1 since it is

more elegant.

3 Observations on the sequences

Let pn =
cn

dn
, where cn and dn are nonnegative integers that are relatively prime. Notice that

4n−1pn =
4n−1

2
− 1

2

n
∑

k=1

4n−k−1

((

k

n− k

)

+

(

k − 1

n− k

))2

is an odd integer, since

1

2

n
∑

k=n−1

4n−k−1

((

k

n− k

)

+

(

k − 1

n− k

))2

=
1

2

(

((

n− 1

1

)

+

(

n− 2

1

))2

+ 4−1

((

n

0

)

+

(

n− 1

0

))2
)

=
1

2

(

(2n− 3)2 + 1
)

= 2n2 − 6n+ 5

is an odd integer, and all other summands are even. In other words, dn = 4n−1, and

cn =
1

8

(

4n −
n
∑

k=1

4n−k

((

k

n− k

)

+

(

k − 1

n− k

))2
)

. As mentioned in Section 1, we observed
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that c3, c4, c5, c6, and c7 satisfy the recurrence relation xn+2 = 4xn+1+xn, but this recurrence
relation does not hold from c8 onwards. The integer sequence cn is added to the On-Line
Encyclopedia of Integer Sequences (OEIS), listed as A265919. The integer sequence formed
by the numerators of the winning probabilities for Alice is listed as A265920.

Apart from the integer sequences that we discovered, we are also very interested in the
sequence of fractions pn. The disadvantage that Bob has due to Alice going first should be
less significant as n increases, so it is reasonable to believe that pn should increase with n.
This trend is mostly true: with the exception of n = 3, pn−1 < pn for all n up to 5000.

Another interesting observation about pn is that its convergence rate towards
1

2
is slow.

For example, p100 ≈ 44.83%, which is very surprising since most people would believe that
the disadvantage of Bob is insignificant by the time n reaches 100. In fact, p1000 ≈ 48.36%,
p10000 ≈ 49.48%, and p100000 ≈ 49.84%. In other words, the fact that Bob starts second puts
him in a significantly disadvantageous position, which is counter-intuitive.

Theorem 3 solves this basic probabilistic take-away game, but there are several variations
of the game that one can study. For instance, what is the winning probability for Bob in
the following scenarios?

1. Alice and Bob take turns to collect a or b chips randomly and independently with equal
probability, where a < b are positive integers.

2. Alice and Bob take turns to collect a or b chips randomly and independently with
probabilities p and 1− p respectively, where a < b are positive integers and p ∈ [0, 1].

3. Alice and Bob take turns to collect a1, a2, . . . , or am chips randomly and independently
with probabilities p1, p2, . . . , pm respectively, where a1 < a2 < · · · < am are positive
integers, p1, p2, . . . , pm ∈ [0, 1], and p1 + p2 + · · ·+ pm = 1.

4 Results for general cases

Before we proceed, let us introduce a different proof of Theorem 3. This proof is due to
Taoye Zhang (personal communication, October 2015). Let X1, X2, . . . , Xn, Y1, Y2, . . . , Yn

be independent identically distributed integer-valued random variables, where Xi and Yi

represent the number of chips collected by Alice and Bob in the i-th move respectively. Let
Sk =

∑k

i=1 Xi, and Tk =
∑k

i=1 Yi. Let rk = P(Sk ≥ n and Sk−1 < n), and let a be the
minimum positive integer such that P(X1 = a) > 0.

Lemma 4. The probability that Bob wins the game is
1

2
− 1

2

⌈n
a
⌉

∑

k=1

r2k.
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Proof. Since {Sk ≥ n and Sk−1 < n}1≤k≤⌈n
a
⌉ are mutually exclusive events and their union

covers the entire sample space, we have

∑

1≤k≤⌈n
a
⌉

rk = 1.

Hence, the probability that Bob wins the game is

⌈n
a
⌉

∑

k=1

P(Sk < n)P(Tk ≥ n and Tk−1 < n)

=

⌈n
a
⌉

∑

k=1

(

1−
k
∑

i=1

ri

)

rk =

⌈n
a
⌉

∑

k=1





⌈n
a
⌉

∑

i=k+1

ri



 rk

=
∑

1≤k<i≤⌈n
a
⌉

rirk =
1

2









⌈n
a
⌉

∑

k=1

rk





2

−
⌈n
a
⌉

∑

k=1

r2k





=
1

2
− 1

2

⌈n
a
⌉

∑

k=1

r2k.

Second Proof of Theorem 3. Since Alice and Bob collect 1 or 2 chips randomly and indepen-

dently with equal probability, P(Xi = 1) = P(Xi = 2) = P(Yi = 1) = P(Yi = 2) =
1

2
. Let

sk = |{i : Xi = 2, 1 ≤ i ≤ k}|, and let tk = |{i : Yi = 2, 1 ≤ i ≤ k}|. Notice that sk + k = Sk

and tk + k = Tk. Hence,

rk = P(Sk = n) + P(Sk−1 = n− 1 and Xk = 2)

= P(sk = n− k) + P(sk−1 = n− k and Xk = 2)

=
1

2k

(

k

n− k

)

+
1

2k−1

(

k − 1

n− k

)

· 1
2

=
1

2k

((

k

n− k

)

+

(

k − 1

n− k

))

.

Substituting this into the winning probability for Bob in Lemma 4 with a = 1 yields the
desired result.

Next, we consider the three scenarios listed in Section 3. Let

(

x

y

)

int

=

(

x

y

)

if y is a

nonnegative integer, and

(

x

y

)

int

= 0 otherwise.
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Theorem 5. Alice and Bob take turns to collect a or b chips randomly and independently
with probabilities p and q = 1−p respectively, where a < b are positive integers and p ∈ [0, 1].
Then the probability that Bob collects at least n chips before Alice is

1

2
− 1

2
·
⌈n

a⌉
∑

k=1

(

(

k
n−ak
b−a

)

int

p
bk−n
b−a q

n−ak
b−a +

a−1
∑

i=1

(

k − 1
n−a(k−1)−i

b−a

)

int

p
b(k−1)−n+i

b−a q
n−a(k−1)−i

b−a

+
b−1
∑

i=a

(

k − 1
n−a(k−1)−i

b−a

)

int

p
b(k−1)−n+i

b−a q
n+b−ak−i

b−a

)2

.

Proof. In this case, P(Xi = a) = P(Yi = a) = p and P(Xi = b) = P(Yi = b) = 1 − p = q.
Let sk = |{i : Xi = b, 1 ≤ i ≤ k}|, and let tk = |{i : Yi = b, 1 ≤ i ≤ k}|. Notice that
sk(b− a) + ka = Sk and tk(b− a) + ka = Tk. Hence,

rk = P(Sk = n) +
a−1
∑

i=1

P(Sk−1 = n− i) +
b−1
∑

i=a

P(Sk−1 = n− i and Xk = b)

= P

(

sk =
n− ak

b− a

)

+
a−1
∑

i=1

P

(

sk−1 =
n− a(k − 1)− i

b− a

)

+
b−1
∑

i=a

P

(

sk−1 =
n− a(k − 1)− i

b− a
and Xk = b

)

=

(

k
n−ak
b−a

)

int

p
bk−n
b−a q

n−ak
b−a +

a−1
∑

i=1

(

k − 1
n−a(k−1)−i

b−a

)

int

p
b(k−1)−n+i

b−a q
n−a(k−1)−i

b−a

+
b−1
∑

i=a

(

k − 1
n−a(k−1)−i

b−a

)

int

p
b(k−1)−n+i

b−a q
n−a(k−1)−i

b−a · q

=

(

k
n−ak
b−a

)

int

p
bk−n
b−a q

n−ak
b−a +

a−1
∑

i=1

(

k − 1
n−a(k−1)−i

b−a

)

int

p
b(k−1)−n+i

b−a q
n−a(k−1)−i

b−a

+
b−1
∑

i=a

(

k − 1
n−a(k−1)−i

b−a

)

int

p
b(k−1)−n+i

b−a q
n+b−ak−i

b−a .

Substituting this into the winning probability for Bob in Lemma 4 yields the desired
result.

In particular, if p =
1

2
, then we have the following corollary.

Corollary 6. If Alice and Bob take turns to collect a or b chips randomly and independently
with equal probability, where a < b are positive integers, then the probability that Bob collects
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at least n chips before Alice is

1

2
− 1

2
·
⌈n

a⌉
∑

k=1

1

4k

(

(

k
n−ak
b−a

)

int

+ 2 ·
a−1
∑

i=1

(

k − 1
n−a(k−1)−i

b−a

)

int

+
b−1
∑

i=a

(

k − 1
n−a(k−1)−i

b−a

)

int

)2

.

Proof. Substituting p = q =
1

2
into the probability found in Theorem 5, we have

1

2
− 1

2
·
⌈n

a⌉
∑

k=1

(

(

k
n−ak
b−a

)

int

(

1

2

)k

+
a−1
∑

i=1

(

k − 1
n−a(k−1)−i

b−a

)

int

(

1

2

)k−1

+
b−1
∑

i=a

(

k − 1
n−a(k−1)−i

b−a

)

int

(

1

2

)k
)2

.

This yields our desired result.

Theorem 7. Alice and Bob take turns to collect a1, a2, . . . , or am chips randomly and
independently with probabilities p1, p2, . . . , pm respectively, where a1 < a2 < · · · < am are
positive integers, p1, p2, . . . , pm ∈ [0, 1], and p1 + p2 + · · ·+ pm = 1. The probability that Bob
collects at least n chips before Alice is

1

2
− 1

2
·

⌈

n
a1

⌉

∑

k=1

















∑

(sk1,sk2,...,skm)∈Zm
≥0:

∑m
g=1 skgag=n

∑m
g=1 skg=k

(

k

sk1, sk2, . . . , skm

) m
∏

ℓ=1

p
skℓ
ℓ

+
m
∑

j=1

aj−1
∑

i=aj−1

∑

(sk1,sk2,...,skm)∈Zm
≥0:

∑m
g=1 skgag=n−i

∑m
g=1 skg=k−1

(

k − 1

sk1, sk2, . . . , skm

) m
∏

ℓ=1

p
skℓ
ℓ

(

m
∑

α=j

pα

)

















2

.

Proof. In this case, P(Xi = aj) = P(Yi = aj) = pj for all j = 1, 2, . . . ,m. Let skj = |{i :
Xi = aj, 1 ≤ i ≤ k}|, and let tkj = |{i : Yi = aj, 1 ≤ i ≤ k}|, where j = 1, 2, . . . ,m. Define
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a0 = 1. Notice that
∑m

j=1 skjaj = Sk and
∑m

j=1 tkjaj = Tk. Hence,

rk = P(Sk = n) +
m
∑

j=1

aj−1
∑

i=aj−1

P(Sk−1 = n− i and Xk = aj, aj+1, . . . , or am)

=
∑

(sk1,sk2,...,skm)∈Zm
≥0:

∑m
g=1 skgag=n

∑m
g=1 skg=k

(

k

sk1, sk2, . . . , skm

) m
∏

ℓ=1

p
skℓ
ℓ

+
m
∑

j=1

aj−1
∑

i=aj−1

∑

(sk1,sk2,...,skm)∈Zm
≥0:

∑m
g=1 skgag=n−i

∑m
g=1 skg=k−1

(

k − 1

sk1, sk2, . . . , skm

) m
∏

ℓ=1

p
skℓ
ℓ

(

m
∑

α=j

pα

)

.

Substituting this into the winning probability for Bob in Lemma 4 with a = a1 yields
the desired result.

5 Further observations and open questions

The numerical results given by the formulae in Theorems 3, 5, and 7 can also be computed
by using recursive formulae and dynamic programming. This is particularly useful for the
case in Theorem 7, since it significantly reduces the computational complexity.

Let position (i, j) denote the instance when Alice and Bob have already collected n − i

and n − j chips respectively. In other words, Alice and Bob need to collect i and j chips
respectively to win the game. Let

Pi,j = P(Bob wins from position (i, j) | Alice starts).

Then
P(Alice wins from position (i, j) | Alice starts) = 1− Pi,j ,

P(Alice wins from position (i, j) | Bob starts) = Pj,i,

and
P(Bob wins from position (i, j) | Bob starts) = 1− Pj,i.

In each case, the winning probability for Bob is given by Pn,n.
Under the conditions given in Theorem 3, Pi,j satisfies the recurrence relation

Pi,j =
1

2
(1− Pj,i−1) +

1

2
(1− Pj,i−2) = 1− 1

2
(Pj,i−1 + Pj,i−2).

Under the conditions given in Theorem 5, Pi,j satisfies the recurrence relation

Pi,j = p(1− Pj,i−a) + q(1− Pj,i−b) = 1− (pPj,i−a + qPj,i−b).
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Finally, under the conditions given in Theorem 7, Pi,j satisfies the recurrence relation

Pi,j =
m
∑

g=1

pg(1− Pj,i−ag) = 1−
m
∑

g=1

pgPj,i−ag .

In all three cases, the initial conditions for Pi,j are

1. Pi,j = 0 for all i, j ∈ Z such that i ≤ a and j ≥ 1;

2. Pi,j = 1 for all i, j ∈ Z such that i ≥ 1 and j ≤ 0,

where a is the least number of chips that Alice or Bob can collect in one move. Note that
we do not need to specify Pi,j if i, j ≤ 0.

Another observation is related to the numerical approximation of pn in the basic proba-
bilistic take-away game. Recall from Theorem 3 that

pn =
1

2
− 1

2

n
∑

k=1

1

4k

((

k

n− k

)

+

(

k − 1

n− k

))2

.

The following nonrigorous arguments suggest that

pn ∼ 1

2
−
√

27

32πn
. (3)

First,

1

2

n
∑

k=1

1

4k

((

k

n− k

)

+

(

k − 1

n− k

))2

=
1

2

n
∑

k=⌈n
2
⌉

1

4k

(

k!

(n− k)!(2k − n)!

(

1 +
2k − n

k

))2

.

By Stirling’s approximation, when n is large, this is approximately

1

2

n
∑

k=⌈n
2
⌉

1

4k

( √
2πk

(

k
e

)k

√

2π(n− k)
(

n−k
e

)n−k√

2π(2k − n)
(

2k−n
e

)2k−n

(

3k − n

k

)

)2

,

which can be simplified to

1

π

n
∑

k=⌈n
2
⌉

k2k+2

22k+2
· 1

k(n− k)2(n−k)+1(2k − n)2(2k−n)+1
· (3k − n)2

k2
,

and can be transformed into

1

π

n
∑

k=⌈n
2
⌉

(

3− n
k

)2

k
(

2n
k
− 2
)2(n−k)+1 (

4− 2n
k

)2(2k−n)+1
.
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We are going to approximate the last sum by turning it into an integral, with the discrete
variable k replaced by a continuous variable u. The integral is

1

π

∫ n

n
2

(

3− n
u

)2

u
(

2n
u
− 2
)2(n−u)+1 (

4− 2n
u

)2(2u−n)+1
du.

We can perform a substitution x =
2n

u
, which yields

1

π

∫ 2

4

(

3− x
2

)2

2n
x
(x− 2)2(n−

2n
x
)+1(4− x)2(2

2n
x
−n)+1

(

−2n

x2

)

dx.

This integral simplifies to

1

4π

∫ 4

2

(6− x)2

x(x− 2)
2n
x
(x−2)+1(4− x)

2n
x
(4−x)+1

dx,

and we further transform it into

1

4π

∫ 4

2

(6− x)2

x(x− 2)(4− x)
· en·−2

x
ln((x−2)x−2(4−x)4−x)dx. (4)

Let

I(n) =

∫ 4

2

f(x)enφ(x)dx,

where f(x) =
(6− x)2

x(x− 2)(4− x)
and φ(x) =

−2

x
ln ((x− 2)x−2(4− x)4−x). This is a Laplace

integral. Note that φ′(x) =
2

x2
ln ((x− 2)−2(4− x)4), whose only zero on the interval (2, 4)

is x = 3. Note also that f(3) = 3 6= 0 and φ′′(3) = −4

3
< 0. Although I(n) is an improper

integral, since lim
x→2

φ(x) = − ln 4 and lim
x→4

φ(x) = − ln 4

2
, the techniques on a Laplace integral

[1, pp. 261–267] still apply. Hence, we have

I(n) ∼
√
2πf(3)enφ(3)
√

−nφ′′(c)
=

√
2π · 3 · 1

√

−n ·
(

−4
3

)

=

√

27π

2n
. (5)

Substituting (5) into (4) yields (3).
Finally, after studying various scenarios in Section 4, there are still some related open

questions. One such question is the following.

Question 8. Find the winning probability for Bob if Alice and Bob take turns to lose 1 chip
(i.e., collect −1 chip) or collect 2 chips randomly and independently with equal probability.
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