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a b s t r a c t

Let n be a positive integer, and let d = (d1, d2, . . . , dn) be an n-tuple of integers such
that di ≥ 2 for all i. A hypertorus Q d

n is a simple graph defined on the vertex set
{(v1, v2, . . . , vn) : 0 ≤ vi ≤ di − 1 for all i}, and has edges between u = (u1, u2, . . . , un)
and v = (v1, v2, . . . , vn) if and only if there exists a unique i such that |ui − vi| = 1 or
di − 1, and for all j ≠ i, uj = vj; a two-dimensional hypertorus Q d

2 is simply a torus. In
this paper, we prove that if d1 ≥ 3 and d2 ≥ 3, then Q d

2 is balanced paired 2-to-2 disjoint
path coverable if both di are even, and is paired 2-to-2 disjoint path coverable otherwise.
We also discuss a connection between this result and the popular game Flow Free. Finally,
we prove several related results in higher dimensions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a simple graph with vertex set V (G) and edge set E(G). A path of length n is an alternating sequence
v1, e1, v2, e2, . . . , en−1, vn of vertices and edges such that all vertices vi, i = 1, . . . , n, are distinct; if instead v1 = vn,
then we call this sequence a closed path or cycle. A hamiltonian path (respectively hamiltonian cycle) is a path (cycle) that
includes all vertices of G. A graph G is said to be hamiltonian if it contains a hamiltonian cycle, and is said to be hamiltonian
connected if there exists a hamiltonian path between any two distinct vertices in G ([14]; see also e.g. [11]). A bipartite graph
G with partite sets V1 and V2 is said to be hamiltonian laceable if:
• |V1| = |V2|, and there exists a hamiltonian path between any pair of vertices u in V1 and v in V2, or
• |V1| = |V2| + 1, and there exists a hamiltonian path between any pair of (distinct) vertices u and v in V1.

Let n be a positive integer, and d = (d1, d2, . . . , dn) an n-tuple of integers such that di ≥ 2 for all i = 1, 2, . . . , n. Let Ldn
denote an n-dimensional rectangular lattice, which is defined to be the graph on the vertex set

{(v1, v2, . . . , vn) : 0 ≤ vi ≤ di − 1 for all i = 1, 2, . . . , n}
with edges between u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) if and only if there exists a unique i, 1 ≤ i ≤ n, such that
|ui − vi| = 1, and for all j ≠ i, uj = vj. In 1977, Simmons proved the following theorem.

Theorem 1.1 ([18]). Every n-dimensional lattice, n ≥ 3, is hamiltonian laceable.

Two-dimensional rectangular lattices appear, for example, in the popular game Flow Free [2]. This game is played on a
d1 by d2 rectangular board, which is equivalent to the rectangular lattice L(d1,d2)

2 . In this game, the player must connect each
given pair of dots using a path such that every square is covered and no path crosses itself or any other path. For example,
Fig. 1 shows a game board along with one possible solution.

However, it should not be surprising that many boards in two dimensions will not have a solution. For example, in
Fig. 2(a), no solution exists and any attempt results in a situation similar to the one pictured in Fig. 2(b).
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Fig. 1. A Flow Free game on a rectangular lattice along with one possible solution.

Fig. 2. A game (Fig. 2(a)) which has no solution when played on a rectangular lattice (Fig. 2(b)). However, this game does have a solution when played on
a torus (Fig. 2(c)).

This problem occurs because while rectangular lattices are natural objects, they are irregular in the sense that not all
vertices are of the same degree. Hence, we will now consider the same game on a torus, meaning that opposite edges are
identified and a path can exit one edge of the board and reenter at the corresponding square on the opposite edge. Notice
that the game in Fig. 2(a) can now be solved in this environment (see Fig. 2(c)). This encourages the question of how the
game can be set-up so that a solution exists; for additional examples of solvable configurations, see [13]. Before stating our
theorem that addresses this question, we will need some additional terminology.

Let S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk} be disjoint sets of distinct vertices. In this paper, a paired disjoint k-path
cover of a graph G is a subgraph of G consisting of paths P1, P2, . . . , Pk such that the path Pi has endpoints si and ti, and the
vertex sets of the paths partition V (G). We will often abbreviate the term ‘‘paired disjoint k-path cover’’ as ‘‘paired k-path
cover’’ or simply ‘‘k-path cover’’. If G has a k-path cover for every choice of S and T , then G is said to be paired k-to-k disjoint
path coverable.

Let G be a bipartite graph with partite sets V1 and V2. Let |V1| − |V2| = δ. We say that S ∪ T is balanced if |(S ∪ T )∩ V1| −

|(S ∪ T )∩ V2| = 2δ. Note that the existence of a k-path cover of G for endpoints S and T implies S ∪ T is balanced. Hence, G
is said to be balanced paired k-to-k disjoint path coverable if G has a k-path cover for every choice of S and T such that S ∪ T
is balanced.

Letd = (d1, d2, . . . , dn)be ann-tuple of integers such that di ≥ 2 for all i. The graphQ d
n is ahypertorus, or ann-dimensional

torus, which is defined on the same vertex set as Ldn and has edges between u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) if
and only if there exists a unique i, 1 ≤ i ≤ n, such that |ui − vi| = 1 or di − 1, and for all j ≠ i, uj = vj. A standard torus is
simply Q (d1,d2)

2 .
We are now ready to state our main result.

Theorem 3.1. Let d1 ≥ 3 and d2 ≥ 3 be integers. If d1 and d2 are not both even, then Q (d1,d2)
2 is paired 2-to-2 disjoint path

coverable. Otherwise, Q (d1,d2)
2 is balanced paired 2-to-2 disjoint path coverable.

In terms of the game Flow Free, Theorem 3.1 implies that given two pairs of endpoints on a d1 by d2 board with opposite
sides identified, there exists a solution if and only if either d1 and d2 are not both even, or d1 and d2 are both even and the
four endpoints are balanced, i.e., two endpoints are on white squares and the other two on black squares (when the board
is colored like a standard chess board).

We now consider this game in higher dimensions on Q d
n . Our results are as follows. Theorem 2.2 addresses a game

scenario in which for each pair, one dot is given and the other may be chosen by the player. Theorem 3.3 returns to the
standard Flow Free scenario when played on a torus, but in higher dimensions.

Theorem 2.2. Let e1, e2, . . . , ek be k distinct vertices of Q d
n . Then there exist k distinct vertices f1, f2, . . . , fk of Q d

n , fi ≠ ej if
i ≠ j, such that Q d

n can be partitioned into vertex-disjoint paths with endpoints ei and fi. Note that if ei = fi, then the path is
empty.
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Theorem 3.3. Let n ≥ 2 be an integer, and let d = (d1, d2, . . . , dn) be an n-tuple of integers such that di ≥ 3 for all
i = 1, 2, . . . , n.

1. Suppose d1, d2, . . . , dn are not all even. If Q d
n is paired n-to-n disjoint path coverable for all d such that 3 ≤ d1, d2, . . . , dn ≤

4n, then Q d
n is paired n-to-n disjoint path coverable for all d.

2. Suppose d1, d2, . . . , dn are all even. If Q d
n is balanced paired n-to-n disjoint path coverable for all d such that 3 ≤

d1, d2, . . . , dn ≤ 4n, then Q d
n is balanced paired n-to-n disjoint path coverable for all d.

Hypertori are interesting graphs to study formany reasons. First, they are regular graphs, i.e. every vertex shares the same
degree. In fact, they are vertex transitive graphs, i.e. for any twodistinct verticesu and v inQ d

n , there is a graph automorphism
φ on Q d

n such that φ(u) = v. Also, they are generalizations of hypercubes Qn, studied for example in [4–7,16] and d-ary n-
cubes Q d

n , studied for example in [3,17]. Indeed, when d = (2, 2, . . . , 2),Q d
n = Qn, and when d = (d, d, . . . , d),Q d

n = Q d
n .

The study of hypercubes is strongly motivated by coding theory. While binary codes are objects of fundamental interest,
d-ary codes for d > 2 are also of great importance. However, these codes exhibit drastically different properties. For example,
hypercubesQn are regular of degree n, while d-ary n-cubesQ d

n with d > 2 are regular of degree 2n. Although hypercubes and
d-ary hypercubes are natural objects in coding theory, they may also be viewed as geometric objects, in which case there is
no reason to limit ourselves to the special case where all dimensions have the same size. Hypertori are the strongest such
generalization.

The problem of finding k-path covers is a generalization of the renowned problem of finding hamiltonian paths. In fact,
when k = 1, a graph is paired 1-to-1 disjoint path coverable (respectively balanced paired 1-to-1 disjoint path coverable)
if and only if it is hamiltonian connected (respectively hamiltonian laceable). Furthermore, k-path covers are used in data
routing problems to address issues related to communication congestion. Hence, determining whether a graph is paired
k-to-k disjoint path coverable has become an interesting topic, and some related results can be found for example in
[4,6,8–10,12,15,19].

There are also many variants of the disjoint path cover problem. For example, [17] studies k-disjoint path covers where
the paths are disjoint except that they all share a common pair of endpoints. Alternatively, [1] declares a set of vertices T and
studies unpaired disjoint path covers where all vertices in T , and possibly others in addition, are used as path endpoints.

2. Fixed-to-floating disjoint path covers of hypertori

In this section, we investigate fixed-to-floating disjoint path covers, which means that one endpoint of each path is
predetermined and the other may be chosen as needed to achieve the desired objective. This problem is motivated by its
use in the proof of Theorem 3.3. We begin with the following proposition, which is a modest generalization of an analogous
result about Q d

n in [3].

Proposition 2.1. Let n be a positive integer and d = (d1, d2, . . . , dn) be an n-tuple of integers such that di ≥ 2 for all
i = 1, 2, . . . , n. Then the n-dimensional hypertorus Q d

n is hamiltonian, except when n = 1 and d = (2).

Proof. We will proceed by induction on n. To simplify our proof, we find it convenient to construct directed cycles; this
orientation may of course be removed afterwards.

When n = 1 and d1 ≠ 2,Q (d1)
1 is the hamiltonian cycle (0) → (1) → · · · → (d1 − 1) → (0). When n = 2 and

d = (2, d2), Q d
2 contains the hamiltonian cycle

(0, 0)→ (0, 1)→ · · · → (0, d2 − 1)→ (1, d2 − 1)→ (1, d2 − 2)→ · · · → (1, 0)→ (0, 0).

Assume that Q d
n has a hamiltonian cycle v0 → v1 → · · · → vD−1 → v0 for some n, where d = (d1, d2, . . . , dn), and

D = d1d2 · · · dn. Let dn+1 ≥ 2 be an integer, and let d∗ = (d1, d2, . . . , dn+1). For each vertex v in Q d
n , let (v, j) denote the

vertex inQ d∗
n+1 obtained by appending j to the n-tuple v. It is worth noting that (v0, j)→ (v1, j)→ · · · → (vD−1, j)→ (v0, j)

is a cycle (but not a hamiltonian cycle) in Q d
n .

If dn+1 is even, then there is a hamiltonian cycle

(v0, 0) → (v1, 0) → · · · → (vD−1, 0)
↓

(v0, 1) ← (v1, 1) ← · · · ← (vD−1, 1)
↓

. . .

↓

(v0, 0) ← (v0, dn+1 − 1) ← (v1, dn+1 − 1) ← · · · ← (vD−1, dn+1 − 1)

in Q d∗
n+1.
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If dn+1 is odd, then there is a hamiltonian cycle

(v0, 0) → (v1, 0) → · · · → (vD−1, 0) (v0, 0)
↓ ↑

(v1, 1) ← · · · ← (vD−1, 1) (v0, 1)
↓ ↑

· · ·
...

...
...

· · ·
...

↓ ↑

(v1, dn+1 − 1) → · · · → (vD−1, dn+1 − 1) → (v0, dn+1 − 1)

in Q d∗
n+1. �

We now prove the main result of this section.

Theorem 2.2. Let e1, e2, . . . , ek be k distinct vertices of Q d
n . Then there exist k distinct vertices f1, f2, . . . , fk of Q d

n , fi ≠ ej if
i ≠ j, such that Q d

n can be partitioned into vertex-disjoint paths with endpoints ei and fi. Note that if ei = fi, then the path is
empty.

Proof. If n = 1 and d = (2), then this theorem holds trivially. Otherwise, let d = (d1, d2, . . . , dn), and let D = d1d2 · · · dn.
By Proposition 2.1, Q d

n contains a hamiltonian cycle H = v0 → v1 → · · · → vD−1 → v0. For all j = 1, 2, . . . , k, let ij be the
integer such that vij = ej. Without loss of generality, assume that 0 = i1 < i2 < · · · < ik.

Let fk = vD−1, and for all j = 1, 2, . . . , k − 1, let fj = vij+1−1. Define Pj to be the subpath of H from ej to fj. In this way,
we obtain a vertex-disjoint path-partition of Q d

n into P1, P2, . . . , Pk, as desired. �

3. Paired many-to-many disjoint path covers of hypertori

In this section, we begin by proving our main result on paired disjoint path covers of Q d
n for n = 2. We then use a similar

argument to prove the induction step for n ≥ 3.

Theorem 3.1. Let d1 ≥ 3 and d2 ≥ 3 be integers. If d1 and d2 are not both even, then Q (d1,d2)
2 is paired 2-to-2 disjoint path

coverable. Otherwise, Q (d1,d2)
2 is balanced paired 2-to-2 disjoint path coverable.

Proof. We proceed by induction on d1 and d2. All base cases, namely 3 ≤ d1 ≤ d2 ≤ 8, have been checked with a computer.
In this proof, we will only show the induction on d2, as induction on d1 is analogous. Fix d2 ≥ 7, and suppose that Q (d1,d2)

2 is
(balanced) paired 2-to-2 disjoint path coverable.

Consider Q (d1,d2+2)
2 with a given choice of endpoints {s1, s2} and {t1, t2} (with the additional condition that {s1, s2, t1, t2}

is balanced when d1 and d2 are both even). Let column j of Q (d1,d2+2)
2 denote the set of vertices {(i, j) : i = 0, 1, . . . , d1− 1}.

As d2 + 2 ≥ 9, there are two consecutive columns of Q (d1,d2+2)
2 that contain none of the four endpoints. Without loss of

generality, let them be columns d2 and d2 + 1 of Q (d1,d2+2)
2 .

Let R denote the subgraph of Q (d1,d2+2)
2 induced by columns 0, 1, . . . , d2 − 1. Let Q be the 2-dimensional torus obtained

from R by connecting (i, 0) and (i, d2− 1) for all i = 0, 1, . . . , d1− 1. Note that Q is isomorphic to Q (d1,d2)
2 . By the induction

hypothesis, there exists a paired 2-path cover C of Q with endpoints {s1, s2} and {t1, t2}. Define

X =

(xi, d2 − 1) : {(xi, d2 − 1), (xi, 0)} ∈ E(C)


,

the set of vertices in column d2− 1 of Q fromwhich the 2-path cover C has an edge to a vertex in column 0 of Q . Here, E(C)
denotes the edge set of C.

If X is empty, then the 2-path cover C contains an edge in Q between two vertices (y, d2− 1) and (y+ 1, d2− 1), where
y < d1 − 1. We now construct a 2-path cover of Q (d1,d2+2)

2 . Embed C into Q (d1,d2+2)
2 , and denote the image as C ′. The edge

set of the 2-path cover of Q (d1,d2+2)
2 will be

E(C ′) \

{(y, d2 − 1), (y+ 1, d2 − 1)}


∪


{(y, d2 − 1), (y, d2)}, {(y+ 1, d2 − 1), (y+ 1, d2)}, {(0, d2), (0, d2 + 1)},

{(d1 − 1, d2), (d1 − 1, d2 + 1)}

∪


{(i, d2), (i+ 1, d2)} : i = 0, 1, . . . , y− 1, y+ 1, y+ 2, . . . , d1 − 2


∪


{(i, d2 + 1), (i+ 1, d2 + 1)} : i = 0, 1, . . . , d1 − 2


.
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If X is nonempty, then let k = |X |. Let ei = (xi, d2) for all i = 1, 2, . . . , k, and let Q and Q ′ denote the subgraphs
of Q (d1,d2+2)

2 induced by columns d2 and d2 + 1 respectively. Note that Q is isomorphic to Q (d1)
1 . Furthermore, note that

e1, e2, . . . , ek are distinct vertices inQ . By Theorem 2.2, there exist k distinct vertices f1, f2, . . . , fk ofQ , fi ≠ ej if i ≠ j, such
that Q can be partitioned into vertex-disjoint paths Pi with endpoints ei and fi. Duplicate Q , including all the endpoints ei
and fi and paths Pi, into Q ′. Denote the images of ei, fi, and Pi in Q ′ as e′i, f′i , and P ′i respectively.

We now construct a 2-path cover of Q (d1,d2+2)
2 as follows. Embed

E(C) \

{(xi, d2 − 1), (xi, 0)} : i = 1, 2, . . . , k


into Q (d1,d2+2)

2 , and denote the image as C ′′. The 2-path cover of Q (d1,d2+2)
2 will then consist of all edges from C ′′ and


{(xi, d2 − 1), ei}, {e′i, (xi, 0)}, {fi, f

′

i} : i = 1, 2, . . . , k

∪

k
i=1

E(Pi) ∪
k

i=1

E(P ′i ). �

We now state a conjecture that generalizes the above theorem to all n ≥ 2.

Conjecture 3.2. Let n ≥ 2 be an integer, and let d = (d1, d2, . . . , dn) be an n-tuple of integers such that di ≥ 3 for all
i = 1, 2, . . . , n. If d1, d2, . . . , dn are not all even, then Q d

n is paired n-to-n disjoint path coverable. Otherwise, Q d
n is balanced

paired n-to-n disjoint path coverable.

This conjecture is the strongest possible in the sense that Q d
n cannot be (n+ 1)-to-(n+ 1) disjoint path coverable. This

is because if we pick the endpoints s1, s2, . . . , sn, t1, t2, . . . , tn to be neighbors of sn+1, then there is obviously no path that
joins sn+1 with tn+1 since every vertex in Q d

n has degree 2n.
Theorem 3.1 proves Conjecture 3.2 in the case n = 2. For n ≥ 3, we can prove an inductive step analogous to that in the

proof of Theorem 3.1.

Theorem 3.3. Let n ≥ 2 be an integer, and let d = (d1, d2, . . . , dn) be an n-tuple of integers such that di ≥ 3 for all
i = 1, 2, . . . , n.

1. Suppose d1, d2, . . . , dn are not all even. If Q d
n is paired n-to-n disjoint path coverable for all d such that 3 ≤ d1, d2, . . . , dn ≤

4n, then Q d
n is paired n-to-n disjoint path coverable for all d.

2. Suppose d1, d2, . . . , dn are all even. If Q d
n is balanced paired n-to-n disjoint path coverable for all d such that 3 ≤

d1, d2, . . . , dn ≤ 4n, then Q d
n is balanced paired n-to-n disjoint path coverable for all d.

Proof. The case for n = 2 was finished in Theorem 3.1. We now assume n ≥ 3, and proceed by induction on d1, d2, . . . , dn.
All base cases, namely 3 ≤ d1, d2, . . . , dn ≤ 4n, hold by assumption. In this proof, we will only show the induction on dn,
as the induction steps on d1, d2, . . . , dn−1 are analogous. Fix dn ≥ 4n − 1, and suppose that Q d

n is (balanced) paired n-to-n
disjoint path coverable.

Let d∗ = (d1, d2, . . . , dn−1, dn + 2). Consider Q d∗
n with a given choice of endpoints S = {s1, s2, . . . , sn} and T =

{t1, t2, . . . , tn} (with the additional condition that S ∪ T is balanced when d1, d2, . . . , dn are all even). For every j =
0, 1, . . . , dn + 1, let layer j of Q d∗

n denote the set of vertices

{(i1, i2, . . . , in−1, j) : 0 ≤ iℓ ≤ dℓ − 1 for all ℓ = 1, . . . , n− 1}.

As dn + 2 ≥ 4n + 1, there are two consecutive layers of Q d∗
n that contain none of the endpoints in S ∪ T . Without loss of

generality, let them be layers dn and dn + 1 of Q d∗
n .

Let R denote the subgraph ofQ d∗
n induced by layers 0, 1, . . . , dn−1. LetQ be the n-dimensional hypertorus obtained from

Rby connecting the vertex (i1, i2, . . . , in−1, 0) to the vertex (i1, i2, . . . , in−1, dn−1) for each 0 ≤ iℓ ≤ dℓ−1, ℓ = 1, . . . , n−1.
Note that Q is isomorphic to Q d

n . By the induction hypothesis, there exists a paired n-path cover C of Q with endpoints S
and T . In the following, we will use (x, j) to denote the vertex (x1, x2, . . . , xn−1, j). Define

X =

(xi, dn − 1) : {(xi, dn − 1), (xi, 0)} ∈ E(C)


,

the set of vertices in layer dn − 1 of Q from which the n-path cover C has an edge to a vertex in layer 0 of Q . Here, E(C)
denotes the edge set of C.

If X is empty, then the n-path cover C contains an edge in Q between two vertices

y1 = (y1, y2, . . . , yℓ, . . . , yn−1, dn − 1)

and

y2 = (y1, y2, . . . , yℓ + 1, . . . , yn−1, dn − 1).



B.G. Kronenthal, W.H.T. Wong / Discrete Applied Mathematics 218 (2017) 14–20 19

Let L denote the n-dimensional rectangular lattice on the vertices in layers dn and dn+1 of Q d∗
n . By Theorem 1.1, there exists

a 1-path cover D of Lwith endpoints

y′1 = (y1, y2, . . . , yℓ, . . . , yn−1, dn) and y′2 = (y1, y2, . . . , yℓ + 1, . . . , yn−1, dn).

We now construct an n-path cover of Q d∗
n . Embed C into Q d∗

n , and denote the image as C ′. The edge set of the n-path cover
of Q d∗

n will be
E(C ′) \


{y1, y2}


∪


{y1, y′1}, {y2, y

′

2}

∪ E(D).

If X is nonempty, then let k = |X |. Let ei = (xi, dn) for all i = 1, 2, . . . , k, and let Q and Q ′ denote the subgraphs
of Q d∗

n induced by layers dn and dn + 1 respectively. Note that Q is isomorphic to Q (d1,d2,...,dn−1)
n−1 . Furthermore, note that

e1, e2, . . . , ek are distinct vertices inQ . By Theorem 2.2, there exist k distinct vertices f1, f2, . . . , fk ofQ , fi ≠ ej if i ≠ j, such
that Q can be partitioned into vertex-disjoint paths Pi with endpoints ei and fi. Duplicate Q , including all the endpoints ei
and fi and paths Pi, into Q ′. Denote the images of ei, fi, and Pi in Q ′ as e′i, f′i , and P ′i respectively.

We now construct a paired n-path cover of Q d∗
n as follows. Embed

E(C) \

{(xi, dn − 1), (xi, 0)} : i = 1, 2, . . . , k


into Q d∗

n , and denote the image as C ′′. The n-path cover of Q d∗
n will then consist of all edges from C ′′ and


{(xi, dn − 1), ei}, {e′i, (xi, 0)}, {fi, f

′

i} : i = 1, 2, . . . , k

∪

k
i=1

E(Pi) ∪
k

i=1

E(P ′i ). �

4. Concluding remarks and further directions

There are many studies about disjoint path covers and hypercubes. Their best results usually obtain at most ⌊n/2⌋-path
covers for Qn because Qn is regular of degree n. For example, see [10]. In contrast, the hypertori explored in this paper are
regular of degree 2n. This illustrates a fundamental difference between these two families of objects, and motivates us to
extend results on hypercubes to hypertori.

There are several possible directions in which this work could be extended. One is to prove Conjecture 3.2 by completing
the base case. Another is to study the impact of faulty elements on these problems.

Alternatively, one could generalize the results of this paper to relax the restrictions on di. Consider Q d
n , where di ≥ 2

for all i, and let h denote the cardinality of the set {di : di = 2}. Note that Q d
n is regular of degree 2n − h. We end with the

following conjecture.

Conjecture 4.1. Let n ≥ 2 be an integer, and let d = (d1, d2, . . . , dn) be an n-tuple of integers such that di ≥ 2 for all
i = 1, 2, . . . , n. Define h = |{di : di = 2, i = 1, 2, . . . , n}|. If d1, d2, . . . , dn are not all even, then Q d

n is paired

n−

 h
2


-to-

n−
 h

2


disjoint path coverable. Otherwise, Q d

n is balanced paired

n−

 h
2


-to-


n−

 h
2


disjoint path coverable.

Note that when h = n, i.e. Q d
n is a hypercube, this conjecture states that Qn is balanced paired ⌊n/2⌋-disjoint path coverable,

which is consistent with the results mentioned above.
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