MAT 260 LINEAR ALGEBRA LECTURE 20

WING HONG TONY WONG

1.3 — Matrices and matrix operations

There are two other ways to view matrix multiplication.

(1) If

$$B = (\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_c),$$

where \mathbf{b}_i represents the *i*-th column of B as a column vector, then

$$AB = (A\mathbf{b}_1 \ A\mathbf{b}_2 \ \cdots \ A\mathbf{b}_c).$$

(2) If

$$A = \begin{pmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \vdots \\ \mathbf{a}_r \end{pmatrix},$$

where \mathbf{a}_i represents the *i*-th row of A as a row vector, then

$$AB = \begin{pmatrix} \mathbf{a}_1 B \\ \mathbf{a}_2 B \\ \vdots \\ \mathbf{a}_r B \end{pmatrix}.$$

Also, if

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_c \end{pmatrix}$$

is a column vector of length c, and $A = (\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n)$ is of dimensions $r \times n$, where \mathbf{a}_i represents the i-th column of A, then $A\mathbf{x} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$. We say that it is a **linear combination** of $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ with coefficients x_1, x_2, \ldots, x_n .

Here are two more operations of matrices:

• Transpose of A, denoted by A^{\top} , flips rows and columns. The ij-th entry of A^{\top} is a_{ji} . The i-th row of A is the i-th column of A^{\top} , and the j-th column of A is the j-th row of A^{\top} . If A is of dimensions $r \times c$, then A^{\top} is of dimensions $c \times r$. It is not hard to see that for any scalars k and ℓ , if A and B are of the same size, then $(kA + \ell B)^{\top} = kA^{\top} + \ell B^{\top}$.

Date: Friday, March 6, 2020.

• If A is a square matrix, then the **trace** of A, denoted by $\operatorname{tr}(A)$, is defined as the sum of the diagonal entries of A, i.e. $\operatorname{tr}(A) = \sum a_{ii}$. Again, it is not hard to see that for any scalars k and ℓ , $\operatorname{tr}(kA + \ell B) = k\operatorname{tr}(A) + \ell\operatorname{tr}(B)$.

Theorem 1. If AB is defined, then $(AB)^{\top} = B^{\top}A^{\top}$.

Theorem 2. Let A and B be both square matrices of order n. Then tr(AB) = tr(BA).

Warning: In general, $tr(AB) \neq tr(A)tr(B)$.

Example 3. Here are some subspaces of M_{nn} , the set of all $n \times n$ square matrices.

- Sets of $n \times n$ upper-triangular matrices: $\mathcal{U}_{nn} = \{A \in M_{nn} : a_{ij} = 0 \text{ for all } i > j\}.$
- Sets of $n \times n$ lower-triangular matrices: $\mathcal{L}_{nn} = \{A \in M_{nn} : a_{ij} = 0 \text{ for all } i < j\}.$
- Sets of $n \times n$ diagonal matrices: $\mathcal{D}_{nn} = \{A \in M_{nn} : a_{ij} = 0 \text{ for all } i \neq j\}.$
- Sets of $n \times n$ symmetric matrices: $\{A \in M_{nn} : a_{ij} = a_{ji} \text{ for all } i, j\}$, or $\{A \in M_{nn} : A^{\top} = A\}$.
- Sets of $n \times n$ skew-symmetric matrices: $\{A \in M_{nn} : a_{ij} = -a_{ji} \text{ for all } i, j\}$, or $\{A \in M_{nn} : A^{\top} = -A\}$.