MAT 260 LINEAR ALGEBRA LECTURE 18

WING HONG TONY WONG

1.2 — More on Gaussian Elimination

From the last section, a recipe for solving a system of linear equations is the following.

- (1) Set up an augmented matrix.
- (2) Perform a sequence of elementary row operations on the augmented matrix:
 - The forward phase produces a row echelon form of the augmented matrix.
 - The backward phase produces the reduced row echelon form (rref) of the augmented matrix.
- (3) Interpret the solutions from the rref of the augmented matrix:
 - If there is a leading 1 in the last **column**, then there is no solution.
 - If there is a leading 1 in every **column** except the last, then there is a unique solution.
 - If there is no leading 1 in the last <u>column</u> as well as some other <u>column</u>, then there are infinitely many solutions. You will need to use free parameters to express the solutions.

A system of linear equations is **homogeneous** if all constant terms are 0s, i.e., all entries in the last column of the augmented matrix are 0s. In a homogeneous system of linear equations, all variables being 0s is always a solution, and we call it the **trivial solution**. Any other solution (if it exists) is called a **nontrivial solution**. Note that a homogeneous system of linear equations always has a unique solution or infinitely many solutions.

Warning: Do NOT abuse the term "trivial solution." It is reserved to refer to the SO-LUTION of all 0s for a HOMOGENEOUS system of linear equations. Similarly, the term "nontrivial solution" only refers to a solution that is not all 0s for a HOMOGENEOUS system of linear equations.

Theorem 1. In a HOMOGENEOUS system of linear equations, if there are more variables than equations, then it has infinitely many solutions.

Proof. Let the augmented matrix of this homogeneous system of linear equations be

$$\left(\begin{array}{c|c}A&\mathbf{0}\end{array}\right),$$

where A is a matrix of <u>size</u> $m \times n$ (read as m-by-n, meaning that there are m rows and n columns in A), and the **bold** number 0 denotes a column of 0s.

Date: Monday, March 2, 2020.

Since there are more variables than equations, we have m < n, i.e., the matrix A has more columns than rows. When the augmented matrix $(A|\mathbf{0})$ is reduced to its reduced row echelon form (rref $A|\mathbf{0}$), there are at most m leading 1s (at most one per row) in rref A. As a result, there exists a column of rref A that does not have a leading 1. Hence, there are infinitely many solutions to this homogeneous system of linear equations.

Question: Where did we need use the condition that this system is homogeneous?

The next theorem shows that the solution set of a HOMOGENEOUS system of linear equations forms a vector space. Before this theorem, however, we first introduce several matrix operations: equality, addition, subtraction, scalar multiplication, and multiplication.

 \bullet A=B.

The two matrices A and B must share the <u>same sizes</u> and the <u>same corresponding entries</u>. For instance, the following matrices are not equal to each other.

$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & -2 \\ -1 & 0 & 3 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}.$$

• A + B and A - B.

The two matrices A and B must share the same size, and addition and subtraction are performed **entrywise**. For example,

$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 0 & -2 & 3 \\ 2 & 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 5 \\ 1 & 4 & 2 \end{pmatrix},$$
$$\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 0 & -2 & 3 \\ 2 & 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 5 & -1 \\ -3 & -4 & 4 \end{pmatrix}.$$

• kA, where $k \in \mathbb{R}$.

Scalar multiplication is also performed **entrywise**. For example,

$$3\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 9 & 6 \\ -3 & 0 & 9 \end{pmatrix},$$
$$\frac{1}{6}\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ -\frac{1}{6} & 0 & \frac{1}{2} \end{pmatrix}.$$

• *AB*.

The two matrices A and B must have **compatible sizes**, i.e., the size of A is $m \times k$, and the size of B is $k \times n$. The product AB has size $m \times n$, and the ij-th entry is the **dot product** between the i-th row of A and the j-th column of B, i.e.,

$$\sum_{\ell=1}^{k} a_{i\ell} b_{\ell j}.$$

For example,

$$\begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} -5 \\ -1 \\ 4 \end{pmatrix} = 1 \cdot (-5) + 3 \cdot (-1) + 2 \cdot 4 = 0,$$

$$\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 4 & -6 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 4 + 3 \cdot (-2) & 1 \cdot (-6) + 3 \cdot 5 \\ (-1) \cdot 4 + 2 \cdot (-2) & (-1) \cdot (-6) + 2 \cdot 5 \end{pmatrix} = \begin{pmatrix} -2 & 9 \\ -8 & 16 \end{pmatrix}.$$

Important: Matrix multiplication is

- NOT commutative.
- associative.
- distributive.

Now, we can state and prove our next theorem.

Theorem 2. Let A be an $m \times n$ matrix. The solution set to the matrix equation $A\mathbf{x} = \mathbf{0}$, where

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

denotes a column of variables x_1, x_2, \ldots, x_n , forms a vector space.

Question: What is the size of this column **0**?

Proof. The solution set can be written as

$$W = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$$

Here, **x** represents a column of n real numbers, and \mathbb{R}^n denotes the set of all columns of n real numbers. We want to show that W is a subspace of \mathbb{R}^n .

For all $\mathbf{x}, \mathbf{y} \in W$,

$$A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}.$$

Therefore, $\mathbf{x} + \mathbf{y} \in W$, and Axiom (1) holds for W.

For all $k \in \mathbb{R}$ and $\mathbf{x} \in W$,

$$A(k\mathbf{x}) = k(A\mathbf{x}) = k\mathbf{0} = \mathbf{0}.$$

Therefore, $k\mathbf{x} \in W$, and Axiom (6) holds for W.

By Theorem 3 of Lecture note 9, W is a subspace of \mathbb{R}^n .