MA 1C (SECTION 11) RECITATION 7

TONY WING HONG WONG

1. Conservative Vector Fields

Let $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, D$ open, f continuous. f is conservative if there is a $C^{1} \phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $f=\nabla \phi$.
f is conservative if and only if $\int_{C} f \cdot d \alpha=0$ for all piecewise C^{1} closed curve C in D.
If D is connected and f is conservative, then ϕ is uniquely determined up to a constant, namely $\phi(x)=\int_{C} f \cdot d \alpha$, where C is any path from a fixed point $x_{0} \in D$ to $x \in D$.

Let $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, D$ open, f is $C^{1} . f$ is conservative implies $\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{j}}{\partial x_{i}}$ for all i, j.
Let $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, D$ open and simply connected (no holes), f is $C^{1} \cdot \frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{j}}{\partial x_{i}}$ for all i, j implies f is conservative.

2. Green's Theorem

Jordan curve in \mathbb{R}^{n} is a simple closed curve (no self-intersection). In \mathbb{R}^{2}, we can talk about positively and negatively oriented.
In \mathbb{R}^{2}, the normal vector $\mathbf{n}(t)=\left(\frac{\alpha^{\prime}(t)}{\|\alpha(t)\|}\right)^{\prime}$ points outwards.
Green's Theorem:
$f: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, D$ open and simply connected, f is $C^{1}, \alpha:[a, b] \rightarrow D$ positively oriented piecewise C^{1} Jordan curve. Then
$\int_{C} f \cdot d \alpha=\iint_{R}\left(\frac{\partial f_{2}}{\partial x}-\frac{\partial f_{1}}{\partial y}\right) d x d y$,
where R is the closed region bounded by the Jordan curve α.
It can also be written as $\int_{C} P d x+Q d y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y$, where $f=(P, Q)$.
Note that this integral does not depend on the parametrization α, but only on the curve C itself.

If R has holes, each has boundary a Jordan curve, then Green's Theorem implies $\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\int_{C} P d x+Q d y-\int_{C_{1}} P d x+Q d y-\cdots-\int_{C_{k}} P d x+Q d y$.

Application for calculating areas:
$\operatorname{Area}(R)=\iint_{R} 1 d x d y=\frac{1}{2} \int_{C} x d y-y d x=\frac{1}{2} \int_{a}^{b} x(t) y^{\prime}(t)-y(t) x^{\prime}(t) d t$.

Winding number:
Let $z_{0}=\left(x_{0}, y_{0}\right)$ not on the curve $C=\alpha([a, b])$.
$W\left(\alpha, z_{0}\right)=\frac{1}{2 \pi} \int_{C}-\frac{y-y_{0}}{r^{2}} d x+\frac{x-x_{0}}{r^{2}} d y=\frac{1}{2 \pi} \int_{a}^{b} \frac{\left(x(t)-x_{0}\right) y^{\prime}(t)-\left(y(t)-y_{0}\right) x^{\prime}(t)}{\left(x(t)-x_{0}\right)^{2}+\left(y(t)-y_{0}\right)^{2}} d t$.
If α is a Jordan curve, then $W\left(\alpha, z_{0}\right)= \pm 1$ if z_{0} is in the interior and $W\left(\alpha, z_{0}\right)=0$ if z_{0} is in the exterior.

3. Div, curl and grad

Grad:
$f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$.
Div:
$f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \nabla \cdot f=\frac{\partial f}{\partial x_{1}}+\cdots+\frac{\partial f}{\partial x_{n}}=$ trace of Jacobian matrix of f.
Laplacian:
$f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}, \Delta f=\nabla \cdot \nabla f=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\ldots, \frac{\partial^{2} f}{\partial x_{n}^{2}}=$ trace of Hessian matrix of f. f is harmonic if $\Delta f=0$, a zero function.

Curl:
$f: D \subseteq \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, f=(P, Q, R)$, curl $f=\nabla \times f=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R\end{array}\right|$.

4. Examples

Example 1. If $f(x, y)=(P(x), Q(y))$, then $\frac{\partial Q}{\partial x}=0=\frac{\partial P}{\partial y}$, so f is conservative and $\int_{C} f \cdot d \alpha=0$ for all Jordan curves α.

Example 2. If $P(x, y)=x e^{-y^{2}}$ and $Q(x, y)=-x^{2} y e^{-y^{2}}+\frac{1}{x^{2}+y^{2}}$, evaluate the line integral $\int P d x+Q d y$ around the boundary of the square of side $2 a$ determined by the inequalities $|x| \leq a$ and $|y| \leq a$.
Solution. Note that if $Q^{\prime}(x, y)=-x^{2} y e^{-y^{2}}$, then $\frac{\partial Q^{\prime}}{\partial x}=-2 x y e^{-y^{2}}=\frac{\partial P}{\partial y}$, so $f=\left(P, Q^{\prime}\right)$ is conservative, which gives $\int P d x+Q d y=\left(\int P d x+Q^{\prime} d y\right)+\int \frac{1}{x^{2}+y^{2}} d y=\int \frac{1}{x^{2}+y^{2}} d y$, which is equal to $\int_{a}^{-a} \frac{1}{(-a)^{2}+y^{2}} d y+\int_{-a}^{a} \frac{1}{a^{2}+y^{2}} d y=0$ since they cancel each other.

