MA 1C (SECTION 11) RECITATION 6

TONY WING HONG WONG

		Whole class	Our section
HW	Average	79.31	81.76
	75-percentile	87.24	87.24
	Median	80.61	82.91
	25-percentile	73.98	77.42
Mid-term	Average	58.11	60.92
	75-percentile	68	69.5
	Median	57	62
	25-percentile	45.5	51
Overall	Average	65.65	69.25
	75-percentile	73.56	74.96
	Median	65.65	67.69
	25-percentile	58.85	64.27

2. Line integral

Let $\alpha:[a, b] \rightarrow \mathbb{R}^{n}$ be a piecewise C^{1} curve. Arc length parameter is $s(t)=\int_{a}^{t}\left\|\alpha^{\prime}(u)\right\| d u$, so by fundamental theorem of calculus, $d s=\left\|\alpha^{\prime}(t)\right\| d t$.

Let the path $\alpha([a, b])=C$. If $C \subseteq D$, and $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, then the line integral of f is
$\int_{C} f \cdot d \alpha=\int_{a}^{b} f(\alpha(t)) \cdot \alpha^{\prime}(t) d t$.
If $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, then the line integral with respect to arc length is $\int_{C} f d s=\int_{a}^{b} f(\alpha(t))\left\|\alpha^{\prime}(t)\right\| d t$.

Connection between these two integrals:
Let $T(t)=\frac{\alpha^{\prime}(t)}{\left\|\alpha^{\prime}(t)\right\|}$, the unit tangent vector of the curve α. If $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, define $g(\alpha(t))=f(\alpha(t)) \cdot T(t)$. Then
$\int_{C} g d s=\int_{a}^{b} f(\alpha(t)) \cdot T(t)\left\|\alpha^{\prime}(t)\right\| d t=\int_{a}^{b} f(\alpha(t)) \cdot \alpha(t) d t=\int_{C} f \cdot d \alpha$.
Change of parametrization of the line integral with respect to arc length:
Let $u:[c, d] \rightarrow[a, b]$ be a bijection, C^{1} and $u^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Define the curve β such that $\beta(t)=\alpha(u(t))$.
If u is orientation preserving, then $u(c)=a, u(d)=b$ and $u^{\prime}>0$.

Then $\int_{c}^{d} f(\beta(t))\left\|\beta^{\prime}(t)\right\| d t=\int_{c}^{d} f(\alpha(u(t)))\left\|\alpha^{\prime}(u(t)) u^{\prime}(t)\right\| d t=\int_{c}^{d} f(\alpha(u(t)))\left\|\alpha^{\prime}(u(t))\right\| u^{\prime}(t) d t$ $=\int_{a}^{b} f(\alpha(u))\left\|\alpha^{\prime}(u)\right\| d u$.
If u is orientation reversing, then $u(c)=b, u(d)=a$, and $u^{\prime}<0$.
Then $\int_{c}^{d} f(\beta(t))\left\|\beta^{\prime}(t)\right\| d t=\int_{c}^{d} f(\alpha(u(t)))\left\|\alpha^{\prime}(u(t)) u^{\prime}(t)\right\| d t=\int_{c}^{d} f(\alpha(u(t)))\left\|\alpha^{\prime}(u(t))\right\|\left(-u^{\prime}(t)\right) d t$ $=-\int_{b}^{a} f(\alpha(u))\left\|\alpha^{\prime}(u)\right\| d u=\int_{a}^{b} f(\alpha(u))\left\|\alpha^{\prime}(u)\right\| d u$.

First fundamental theorem of calculus for line integrals:
Let $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous vector field such that for every piecewise C^{1} curve, the line integral of f depends only on the endpoints. Then $f=\nabla \phi$ for some C^{1} scalar field $\phi: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$.

Second fundamental theorem of calculus for line integrals:
Let $\alpha:[a, b] \rightarrow \mathbb{R}^{n}$ be a piecewise C^{1} curve. Let $\alpha([a, b])=C \subseteq D, f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$, then $\int_{C} \nabla f \cdot d \alpha=f(\alpha(b))-f(\alpha(a))$.

3. Connectedness

$S \subseteq \mathbb{R}^{n}$ is connected
if there does not exist disjoint open sets (in \mathbb{R}^{n}) U and V such that $S \cap U \neq \emptyset, S \cap V \neq \emptyset$ and $S \subseteq U \cup V$, or
if there does not exist a 'clopen' set in S except S and \emptyset. (Here, 'clopen' means closed and open at the same time with respect to the 'relative topology' of S.)

For a general set $S \subseteq \mathbb{R}^{n}, S$ path-connected $\Rightarrow S$ connected.
For an open set $U \subseteq \mathbb{R}^{n}, U$ connected $\Rightarrow U$ path-connected.
However, for a general set $S \subseteq \mathbb{R}^{n}, S$ connected $\nRightarrow S$ path-connected.
e.g. $S=(\{(x, \sin (1 / x)): x \in \mathbb{R}\} \cup y$-axis $)$.

4. Examples

Example 1. Find $\int_{C}\left(x^{2}-2 x y\right) d x+\left(y^{2}-2 x y\right) d y$, where C is a path from $(-2,4)$ to $(1,1)$ along the parabola $y=x^{2}$.
Solution. Let $\alpha(t)=(x(t), y(t))=\left(t, t^{2}\right)$, and let $f(x, y)=\left(x^{2}-2 x y, y^{2}-2 x y\right)$. Then our integral is $\int_{C} f \cdot d \alpha=\int_{-1}^{2}\left(t^{2}-2(t)\left(t^{2}\right),\left(t^{2}\right)^{2}-2(t)\left(t^{2}\right)\right) \cdot(1,2 t) d t=\int_{-2}^{1} t^{2}-2 t^{3}+2 t^{5}-4 t^{4} d t$ $=\frac{t^{3}}{3}-\frac{t^{4}}{2}+\frac{t^{6}}{3}-\left.\frac{4 t^{5}}{5}\right|_{-2} ^{1}=-36.9$.

