MA 1C (SECTION 11) RECITATION 6

TONY WING HONG WONG

		Whole class	Our section
HW	Average	79.31	81.76
	75-percentile	87.24	87.24
	Median	80.61	82.91
	25-percentile	73.98	77.42
Mid-term	Average	58.11	60.92
	75-percentile	68	69.5
	Median	57	62
	25-percentile	45.5	51
Overall	Average	65.65	69.25
	75-percentile	73.56	74.96
	Median	65.65	67.69
	25-percentile	58.85	64.27

1. MID-TERM STATISTICS

2. Line integral

Let $\alpha : [a, b] \to \mathbb{R}^n$ be a piecewise C^1 curve. Arc length parameter is $s(t) = \int_a^t \|\alpha'(u)\| du$, so by fundamental theorem of calculus, $ds = \|\alpha'(t)\| dt$.

Let the path $\alpha([a,b]) = C$. If $C \subseteq D$, and $f : D \subseteq \mathbb{R}^n \to \mathbb{R}^n$, then the line integral of f is $\int_C f \cdot d\alpha = \int_a^b f(\alpha(t)) \cdot \alpha'(t) dt$.

If $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$, then the line integral with respect to arc length is $\int_C f ds = \int_a^b f(\alpha(t)) \|\alpha'(t)\| dt$.

Connection between these two integrals:

Let $T(t) = \frac{\alpha'(t)}{\|\alpha'(t)\|}$, the unit tangent vector of the curve α . If $f : D \subseteq \mathbb{R}^n \to \mathbb{R}^n$, define $g(\alpha(t)) = f(\alpha(t)) \cdot T(t)$. Then $\int_C g ds = \int_a^b f(\alpha(t)) \cdot T(t) \|\alpha'(t)\| dt = \int_a^b f(\alpha(t)) \cdot \alpha(t) dt = \int_C f \cdot d\alpha$.

Change of parametrization of the line integral with respect to arc length: Let $u : [c, d] \rightarrow [a, b]$ be a bijection, C^1 and $u'(t) \neq 0$ for all $t \in [c, d]$. Define the curve β such that $\beta(t) = \alpha(u(t))$.

If u is orientation preserving, then u(c) = a, u(d) = b and u' > 0.

Date: May 9, 2013.

 $\begin{array}{l} \text{Then } \int_{c}^{d} f(\beta(t)) \|\beta'(t)\| dt &= \int_{c}^{d} f(\alpha(u(t))) \|\alpha'(u(t))u'(t)\| dt = \int_{c}^{d} f(\alpha(u(t))) \|\alpha'(u(t))\| u'(t) dt \\ &= \int_{a}^{b} f(\alpha(u)) \|\alpha'(u)\| du. \\ \text{If } u \text{ is orientation reversing, then } u(c) &= b, \, u(d) = a, \text{ and } u' < 0. \\ \text{Then } \int_{c}^{d} f(\beta(t)) \|\beta'(t)\| dt &= \int_{c}^{d} f(\alpha(u(t))) \|\alpha'(u(t))u'(t)\| dt = \int_{c}^{d} f(\alpha(u(t))) \|\alpha'(u(t))\| (-u'(t)) dt \\ &= -\int_{b}^{a} f(\alpha(u)) \|\alpha'(u)\| du = \int_{a}^{b} f(\alpha(u)) \|\alpha'(u)\| du. \end{array}$

First fundamental theorem of calculus for line integrals: Let $f : D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a continuous vector field such that for every piecewise C^1 curve, the line integral of f depends only on the endpoints. Then $f = \nabla \phi$ for some C^1 scalar field $\phi : D \subseteq \mathbb{R}^n \to \mathbb{R}$.

Second fundamental theorem of calculus for line integrals:

Let $\alpha : [a,b] \to \mathbb{R}^n$ be a piecewise C^1 curve. Let $\alpha([a,b]) = C \subseteq D, f : D \subseteq \mathbb{R}^n \to \mathbb{R}$, then $\int_C \nabla f \cdot d\alpha = f(\alpha(b)) - f(\alpha(a)).$

3. Connectedness

 $S \subseteq \mathbb{R}^n$ is connected

if there does not exist disjoint open sets (in \mathbb{R}^n) U and V such that $S \cap U \neq \emptyset$, $S \cap V \neq \emptyset$ and $S \subseteq U \cup V$, or

if there does not exist a 'clopen' set in S except S and \emptyset . (Here, 'clopen' means closed and open at the same time with respect to the 'relative topology' of S.)

For a general set $S \subseteq \mathbb{R}^n$, S path-connected $\Rightarrow S$ connected. For an open set $U \subseteq \mathbb{R}^n$, U connected $\Rightarrow U$ path-connected. However, for a general set $S \subseteq \mathbb{R}^n$, S connected $\Rightarrow S$ path-connected. e.g. $S = (\{(x, \sin(1/x)) : x \in \mathbb{R}\} \cup y\text{-axis}).$

4. Examples

Example 1. Find $\int_C (x^2 - 2xy)dx + (y^2 - 2xy)dy$, where C is a path from (-2, 4) to (1, 1) along the parabola $y = x^2$.

Solution. Let $\alpha(t) = (x(t), y(t)) = (t, t^2)$, and let $f(x, y) = (x^2 - 2xy, y^2 - 2xy)$. Then our integral is $\int_C f \cdot d\alpha = \int_{-1}^2 (t^2 - 2(t)(t^2), (t^2)^2 - 2(t)(t^2)) \cdot (1, 2t) dt = \int_{-2}^1 t^2 - 2t^3 + 2t^5 - 4t^4 dt = \frac{t^3}{3} - \frac{t^4}{2} + \frac{t^6}{3} - \frac{4t^5}{5} \Big|_{-2}^1 = -36.9.$