
MA 1C (SECTION 11) RECITATION 5

TONY WING HONG WONG

DISCLAIMER: This note may not cover all materials in the mid-term. It should only be
used as an auxiliary tool for revision. Please refer to my other recitation notes, lecture notes
and the textbook for more details. Also, this note cannot be used during your exam, as
instructed in the course webpage.

1. Topics covered in mid-term

• Rn and its topology, continuous functions
• Differentiation
• Geometric application
• Extrema of function

2. Rn and its toplogy, continuous functions

S ⊆ Rn: Int(S), ∂S, Ext(S).
Open sets, closed sets; closure of S: S̄ = S ∪ ∂S.
Compact sets: compact if and only if closed and bounded (Heine-Borel).

S ⊆ R compact ⇒ S has a max and a min.
Functions f : D ⊆ Rn → Rm, f = (f1, . . . , fm). m > 1: vector field; m = 1: scalar field.
lim
x→a

f(a) = b where a ∈ D.

f is continuous at a: lim
x→a

f(x) = f(a).

Equivalent formulation f : D ⊆ Rn → Rm is continuous (on D) if

for each open (closed) U ⊆ Rm, f−1(U) is open (closed) in D.

Composition of continuous functions is continuous.

f : C ⊆ Rn → R, f continuous and C compact ⇒ f has a global min and a global max on
C because f(C) is compact.

3. Differentiation

f : D ⊆ Rn → Rm, a ∈ Int(D). f is differentiable at a if
there exists a linear L : Rn → Rm such that

lim
h→0

‖(f(a + h)− f(a))− L(h)‖
‖h‖

= 0.

Total derivative: f ′(a) = L : Rn → Rm.

Directional derivative: u ∈ Rn, u 6= 0, f ′(a,u) = lim
t→0

f(a + tu)− f(a)

t
∈ Rm.
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(f differentiable at a ⇒ f ′(a,u) = f ′(a)(u).)
Partial derivative: u = ei,

∂f
∂xi

(a) = f ′(a, ei) = (∂f1
∂xi

(a), . . . , ∂fm
∂xi

(a)).

f : D ⊆ Rn → R, f ′(a) = ∇f(a) = ( ∂f
∂x1

(a), . . . , ∂f
∂xn

(a)) ∈ Rn.

Jacobian matrix of Ja =


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)
...

. . .
...

∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

, where f = (f1, . . . , fm).

If f is differentiable at a, then f ′(a) = Ja.

Sufficient condition for f to be differentiable at a ∈ D:
if ∂f

∂x1
(x), . . . , ∂f

∂xn
(x) exist for all x in a neighborhood around a and are continuous at a, then

f is differentiable at a.
Useful steps for proving or disproving f being differentiable at a ∈ D:
if ∂f

∂xi
(a) does not exist for some i, then f is not differentiable at a;

if ∂f
∂xi

(a) exists for all i, then the Jacobian matrix Ja is well-defined, and we compute

lim
h→0

‖(f(a + h)− f(a))− Ja(h)‖
‖h‖

.

If the limit exists and equal to 0, then f is differentiable at a. Otherwise, we can make a
little argument using proof by contradiction:
If f is differentiable at a, then f ′(a) = Ja and the above limit is equal to 0. However, since
the limit does not exist or is not equal to 0, we have contradiction. Therefore, f is not
differentiable at a.

C1: continuous 1st partial derivatives; C2: continuous 2nd order partial.

2nd order partial derivatives ∂2f
∂xi∂xj

(a) and ∂2f
∂xj∂xi

(a) are equal if f is C2 at a.

Chain rule: g : Rk → Rn, f : Rn → Rm, h = f ◦ g, h′(a) = f ′(g(a)) · g′(a).

4. Geometric application

Path: α : I ⊆ R→ Rn; tangent vector to path: α′(t0) 6= 0.
Tangent space (line): {λα′(t0) : λ ∈ R}.
Affine tangent line at α(t0): {α(t0) + λα′(t0) : λ ∈ R}.

Tangent space to level sets:
f : D ⊆ Rn → R, Lc(f) = L(c, f) = {x ∈ D : f(x) = c}.
α(t0) = a, ∇f(a) ⊥ α′(t0).
If ∇f(a) 6= 0, then {x ∈ Rn : ∇f(a) · x = 0} is the tangent space of Lc(f) at a.

5. Extrema of function

Taylor’s theorem:
f : D ⊆ Rn → R, a ∈ D open.
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f ′(a,h) = f ′(a)(h) =
n∑
i=1

∂f
∂xi

(a)hi, h = (h1, . . . , hn).

f ′′(a,h) =
n∑
i=1

n∑
j=1

∂2f
∂xi∂xj

(a)hihj.

f(a+h) = f(a)+
m−1∑
k=1

1
k!
f (k)(a,h)+ 1

m!
f (m)(u,h), where u is on the line between a and a+h,

provided that f ∈ Cm.

Local (global) min and local (global) max on D:
D open, a ∈ D is local extremum ⇒ f ′(a) = ∇f(a) = 0, critical or stationary point, i.e.
∂f
∂xi

(a) = 0 for 1 ≤ i ≤ n.

Hessian or second derivative test:
f : D ⊆ Rn → R, D open, a ∈ D.

Hf (a) =


∂2f

∂x1∂x1
(a) · · · ∂2f

∂x1∂xn
(a)

...
. . .

...
∂2f

∂xn∂x1
(a) · · · ∂2f

∂xn∂xn
(a)

, f in C2, symmetric matrix.

If A is a symmetric matrix, then quadratic form: QA(h) = h>Ah =
∑
aijhihj, where

h = (h1, . . . , hn) is column vector.
A positive definite: QA(h) > 0 for all h 6= 0, or all eigenvalues are > 0.
A negative definite: QA(h) < 0 for all h 6= 0, or all eigenvalues are < 0.
Hessian Test: If f ′(a) = 0,
Hf (a) positive definite ⇒ local min;
Hf (a) negative definite ⇒ local max;
Some eigenvalues of Hf (a) positive and some negative ⇒ saddle point.

Special case n = 2: Hf (a) =

(
∂2f
∂x2

(a) ∂2f
∂x∂y

(a)
∂2f
∂x∂y

(a) ∂2f
∂y2

(a)

)
=

(
A B
B C

)
, ∆ = AC −B2.

∆ < 0 ⇒ saddle;
∆ > 0, A > 0 ⇒ relative min;
∆ > 0, A < 0 ⇒ relative max;
∆ = 0, inconclusive.

Lagrange multiplier:
f, g1, . . . , gm : D ⊆ Rn → R, D open, m < n, all in C1.
S = {x ∈ D : g1(x) = · · · = gm(x) = 0}. Want to find extrema of f in S.
If ∇g1(x0), . . . ,∇gn(x0) are linearly independent and x0 is local extremum of f in S, then
there exists λ1, . . . , λn s.t. ∇f(x0) =

∑
λi∇gi(x0).

6. Examples

Example 1. Suppose the temperature on the closed ball B = {(x, y, z) : x2 +y2 +z2 ≤ 1} is
given by the formula T (x, y, z) = x2+2y+z. Find the maximum and minimum temperature
in this closed ball as well as their corresponding locations.
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Solution. (1) Since B is closed and bounded, it is compact (Heine-Borel). Besides, T is a
polynomial, thus a continuous function on R3. Hence, there is always a point with global
maximum temperature in B and a point with global minimum.

(2) If the global extrema occur in the interior of B, say at point (x, y, z) ∈ int(B), then
∇T (x, y, z) = (2x, 2, 1) = (0, 0, 0) which is impossible. Hence, the extrema do not occur in
int(B). So the global extrema occur in the boundary of B.

Let S = {(x, y, z) : x2 + y2 + z2 = 1}, or g(x, y, z) = x2 + y2 + z2 − 1. ∇g(x, y, z) =
(2x, 2y, 2z), which is equal to (0, 0, 0) if and only if (x, y, z) = (0, 0, 0). However, (x, y, z) =
(0, 0, 0) does not satisfy the condition that g(x, y, z) = 0, so ∇g(x, y, z) is linearly indepen-
dent.

(3) By the method of Lagrange multiplier, if the point (x, y, z) on S is an extremum, then
there exists some λ ∈ R such that ∇T (x, y, z) = λ∇g(x, y, z), i.e. (2x, 2, 1) = λ(2x, 2y, 2z).
We then have either x = 0 or λ = 1, y = 1

λ
and z = 1

2λ
(this forces λ 6= 0). If x = 0, then

1
λ2

+ 1
4λ2

= 1, which gives λ = ±
√
5
2

, y = ±2
√
5

5
and z = ±

√
5
5

. If λ = 1, then x2 + 1 + 1
4

= 1,

which gives x2 = −1
4
, rejected.

Therefore, the extrema of T can only occur at (x, y, z) = (0,±2
√
5

5
,±
√
5
5

). T (0, 2
√
5

5
,
√
5
5

) =√
5, and T (0,−2

√
5

5
,−
√
5
5

) = −
√

5. Since these are the only two possible points for extrema,
and we know that both global maximum and global minimum exist, we have the maximum

temperature
√

5 at (x, y, z) = (0, 2
√
5

5
,
√
5
5

) and the minimum temperature −
√

5 at (x, y, z) =

(0,−2
√
5

5
,−
√
5
5

).
�

Example 2. Find the global extrema of f(x, y, z) = 3x + 3y + 8z subject to g1(x, y, z) =
x2 + z2 − 1 = 0 and g2(x, y, z) = y2 + z2 − 1 = 0.

Solution. (1) Let S = {(x, y, z) : g1(x, y, z) = g2(x, y, z) = 0}. As S is the intersection of two
level sets, it is closed. Besides, for all (x, y, z) ∈ S, x2 + y2 + z2 ≤ (x2 + z2) + (y2 + z2) = 2,
so it is bounded. By Heine-Borel theorem, S is compact, so there exists a global maximum
and a global minimum of f in S.

(2) ∇g1(x, y, z) = (2x, 0, 2z) and ∇g2(x, y, z) = (0, 2y, 2z), which are linearly independent
unless x = y = 0, and if x = y = 0, z = ±1. f(0, 0, 1) = 8, and f(0, 0,−1) = −8.

(3) If (x, y, z) ∈ S is a global extremum for f , where (x, y) 6= (0, 0), then by the method
of Lagrange multiplier, there exists some λ1, λ2 ∈ R such that ∇f(x, y, z) = λ1∇g1(x, y, z) +
λ2∇g2(x, y, z), i.e. (3, 3, 8) = λ1(2x, 0, 2z)+λ2(0, 2y, 2z). We then have x = 3

2λ1
, y = 3

2λ2
and

z = 4
λ1+λ2

(this forces λ1, λ2 6= 0 and λ1 6= −λ2). Since x2 = 1− z2 = y2, we get x = ±y. If

x = −y, then 3
2λ1

= − 3
2λ2

, contradicting that λ1 6= −λ2. Therefore, x = y and λ1 = λ2. This

gives 9
4λ21

+ 16
4λ21
− 1 = 0, yielding λ1 = ±5

2
. So x = y = ±3

5
, and z = ±4

5
.

f(3
5
, 3
5
, 4
5
) = 10, and f(−3

5
,−3

5
,−4

5
) = −10. By comparing these values, global extrema

do not occur at (x, y, z) = (0, 0,±1). Since there are now only two possible points for
extrema, and we know that both global maximum and global minimum exist, we conclude
that the maximum value f is 10 at (x, y, z) = (3

5
, 3
5
, 4
5
), and the minimum value f is −10 at

(x, y, z) = (−3
5
,−3

5
,−4

5
).

�
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