MA 1C (SECTION 11) RECITATION 4

TONY WING HONG WONG

1. Hessian Test

Let $f : D \subseteq \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, i.e. the second derivative exists and is continuous. The **Hessian matrix** at $\mathbf{a} \in D$ is

$$H(\mathbf{a}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{a})}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{a})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{a})}{\partial x_n \partial x_n \partial x_n} \end{pmatrix}.$$

Now, assume that $\nabla f(\mathbf{a}) = \mathbf{0}$. Then

if $H(\mathbf{a})$ is positive definite, \mathbf{a} is a relative minimum;

if $H(\mathbf{a})$ is negative definite, \mathbf{a} is a relative maximum;

if $H(\mathbf{a})$ is has both positive and negative eigenvalues, then \mathbf{a} is a saddle point.

A symmetric matrix A is positive definite if

- \bullet all eigenvalues of A are strictly positive, or
- $\mathbf{v}^{\top} A \mathbf{v} > 0$ for all nonzero column vector \mathbf{v} , or
- all the leading principal submatrices have positive determinants.

A symmetric matrix A is negative definite if

- all eigenvalues of A are strictly negative, or
- $\mathbf{v}^{\top} A \mathbf{v} < 0$ for all nonzero column vector \mathbf{v} , or

• the leading principal submatrices have determinants of alternating signs, starting with negative.

2. LAGRANGE MULTIPLIER

Let $f, g_1, \ldots, g_m : D \subseteq \mathbb{R}^n \to \mathbb{R}$ be in C^1 , and let $S = \{\mathbf{x} \in D : g_1(\mathbf{x}) = 0, \ldots, g_m(\mathbf{x}) = 0\}$, where m < n. If **a** is a local extremum of f in S and $\nabla g_1(\mathbf{a}), \ldots, \nabla g_m(\mathbf{a})$ are linear independent, then $\nabla f(\mathbf{a}) = \lambda_1 \nabla g_1(\mathbf{a}) + \cdots + \lambda_m \nabla g_m(\mathbf{a})$ for some $\lambda_1, \ldots, \lambda_m \in \mathbb{R}$.

We can try to understand the method of Lagrange multiplier pictorially.

Date: April 25, 2013.

3. Examples

Example 1. Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to $g_1(x, y, z) = x^2 + y^2 - z^2 = 0$ and $g_2(x, y, z) = x + y + z - 3 = 0$.

Solution. (1) Argue using compact sets (closed and bounded sets) to show that there is a global minimum for f on S.

(2) Find $\nabla g_1(x, y, z)$ and $\nabla g_2(x, y, z)$, and determine all (x, y, z) such that these two gradients are linearly independent (in this example, they are always linearly independent on $S = \{(x, y, z) : g_1(x, y, z) = g_2(x, y, z) = 0\}$).

(3) Use the method of Lagrange multiplier to obtain five equations and solve them. These five equations are

$$x^{2} + y^{2} - z^{2} = 0, \ x + y + z - 3 = 0,$$

$$2x = 2\lambda_{1}x + \lambda_{2}, \ 2y = 2\lambda_{1}y + \lambda_{2}, \ 2z = -2\lambda_{1}z + \lambda_{2}.$$

Example 2. Assume $\frac{\partial g}{\partial z}(a, b, c) \neq 0$. Let $\alpha(t) = (a + tu_1, b + tu_2, h(a + tu_1, b + tu_2))$ be a path on the level surface g(x, y, z) = 0, where h comes from the implicit function theorem such that near (a, b, c), g(x, y, z) = 0 is the same as z = h(x, y). Let (u_1, u_2, u_3) be on the tangent plane to the level surface g(x, y, z) = 0 at $(a, b, c), i.e. \nabla g(a, b, c) \cdot (u_1, u_2, u_3) = 0$. Show that $\alpha'(0) = (u_1, u_2, u_3)$.

Solution. By chain rule, $\alpha'(0) = (u_1, u_2, \frac{\partial h}{\partial x}(a, b)u_1 + \frac{\partial h}{\partial y}(a, b)u_2)$, so our goal is to show that $u_3 = \frac{\partial h}{\partial x}(a, b)u_1 + \frac{\partial h}{\partial y}(a, b)u_2$. Note that g(x, y, h(x, y)) = 0 near (a, b, c), so by differentiating with respect to x and y at

Note that g(x, y, h(x, y)) = 0 near (a, b, c), so by differentiating with respect to x and y at (a, b), we get

$$\frac{\partial g}{\partial x}(a,b,c) + \frac{\partial g}{\partial z}(a,b,c)\frac{\partial h}{\partial x}(a,b) = 0,$$

$$\frac{\partial g}{\partial y}(a,b,c) + \frac{\partial g}{\partial z}(a,b,c)\frac{\partial h}{\partial y}(a,b) = 0.$$

Recall that $\nabla g(a, b, c) \cdot (u_1, u_2, u_3) = 0$, so $\frac{\partial g}{\partial x}(a, b, c)u_1 + \frac{\partial g}{\partial y}(a, b, c)u_2 + \frac{\partial g}{\partial z}(a, b, c)u_3 = 0$. Therefore, we have $-\frac{\partial g}{\partial z}(a, b, c)\frac{\partial h}{\partial x}(a, b)u_1 - \frac{\partial g}{\partial z}(a, b, c)\frac{\partial h}{\partial y}(a, b)u_2 + \frac{\partial g}{\partial z}(a, b, c)u_3 = 0$. By dividing $\frac{\partial g}{\partial z}(a, b, c)$, we achieve our goal.