MA 1C (SECTION 11) RECITATION 4

TONY WING HONG WONG

1. Hessian Test

Let $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function, i.e. the second derivative exists and is continuous. The Hessian matrix at $\mathbf{a} \in D$ is

$$
H(\mathbf{a})=\left(\begin{array}{ccc}
\frac{\partial^{2} f(\mathbf{a})}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\mathbf{a})}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f(\mathbf{a})}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f(\mathbf{a})}{\partial x_{n} \partial x_{n}}
\end{array}\right)
$$

Now, assume that $\nabla f(\mathbf{a})=\mathbf{0}$. Then
if $H(\mathbf{a})$ is positive definite, \mathbf{a} is a relative minimum;
if $H(\mathbf{a})$ is negative definite, \mathbf{a} is a relative maximum;
if $H(\mathbf{a})$ is has both positive and negative eigenvalues, then \mathbf{a} is a saddle point.
A symmetric matrix A is positive definite if

- all eigenvalues of A are strictly positive, or
- $\mathbf{v}^{\top} A \mathbf{v}>0$ for all nonzero column vector \mathbf{v}, or
- all the leading principal submatrices have positive determinants.

A symmetric matrix A is negative definite if

- all eigenvalues of A are strictly negative, or
- $\mathbf{v}^{\top} A \mathbf{v}<0$ for all nonzero column vector \mathbf{v}, or
- the leading principal submatrices have determinants of alternating signs, starting with negative.

2. Lagrange Multiplier

Let $f, g_{1}, \ldots, g_{m}: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ be in C^{1}, and let $S=\left\{\mathbf{x} \in D: g_{1}(\mathbf{x})=0, \ldots, g_{m}(\mathbf{x})=0\right\}$, where $m<n$. If a is a local extremum of f in S and $\nabla g_{1}(\mathbf{a}), \ldots, \nabla g_{m}(\mathbf{a})$ are linear independent, then $\nabla f(\mathbf{a})=\lambda_{1} \nabla g_{1}(\mathbf{a})+\cdots+\lambda_{m} \nabla g_{m}(\mathbf{a})$ for some $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$.

We can try to understand the method of Lagrange multiplier pictorially.

3. Examples

Example 1. Minimize $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to $g_{1}(x, y, z)=x^{2}+y^{2}-z^{2}=0$ and $g_{2}(x, y, z)=x+y+z-3=0$.
Solution. (1) Argue using compact sets (closed and bounded sets) to show that there is a global minimum for f on S.
(2) Find $\nabla g_{1}(x, y, z)$ and $\nabla g_{2}(x, y, z)$, and determine all (x, y, z) such that these two gradients are linearly independent (in this example, they are always linearly independent on $S=$ $\left.\left\{(x, y, z): g_{1}(x, y, z)=g_{2}(x, y, z)=0\right\}\right)$.
(3) Use the method of Lagrange multiplier to obtain five equations and solve them. These five equations are

$$
\begin{gathered}
x^{2}+y^{2}-z^{2}=0, x+y+z-3=0, \\
2 x=2 \lambda_{1} x+\lambda_{2}, \quad 2 y=2 \lambda_{1} y+\lambda_{2}, \quad 2 z=-2 \lambda_{1} z+\lambda_{2} .
\end{gathered}
$$

Example 2. Assume $\frac{\partial g}{\partial z}(a, b, c) \neq 0$. Let $\alpha(t)=\left(a+t u_{1}, b+t u_{2}, h\left(a+t u_{1}, b+t u_{2}\right)\right)$ be a path on the level surface $g(x, y, z)=0$, where h comes from the implicit function theorem such that near $(a, b, c), g(x, y, z)=0$ is the same as $z=h(x, y)$. Let $\left(u_{1}, u_{2}, u_{3}\right)$ be on the tangent plane to the level surface $g(x, y, z)=0$ at (a, b, c), i.e. $\nabla g(a, b, c) \cdot\left(u_{1}, u_{2}, u_{3}\right)=0$. Show that $\alpha^{\prime}(0)=\left(u_{1}, u_{2}, u_{3}\right)$.
Solution. By chain rule, $\alpha^{\prime}(0)=\left(u_{1}, u_{2}, \frac{\partial h}{\partial x}(a, b) u_{1}+\frac{\partial h}{\partial y}(a, b) u_{2}\right)$, so our goal is to show that $u_{3}=\frac{\partial h}{\partial x}(a, b) u_{1}+\frac{\partial h}{\partial y}(a, b) u_{2}$.
Note that $g(x, y, h(x, y))=0$ near (a, b, c), so by differentiating with respect to x and y at (a, b), we get

$$
\begin{aligned}
& \frac{\partial g}{\partial x}(a, b, c)+\frac{\partial g}{\partial z}(a, b, c) \frac{\partial h}{\partial x}(a, b)=0 \\
& \frac{\partial g}{\partial y}(a, b, c)+\frac{\partial g}{\partial z}(a, b, c) \frac{\partial h}{\partial y}(a, b)=0 .
\end{aligned}
$$

Recall that $\nabla g(a, b, c) \cdot\left(u_{1}, u_{2}, u_{3}\right)=0$, so $\frac{\partial g}{\partial x}(a, b, c) u_{1}+\frac{\partial g}{\partial y}(a, b, c) u_{2}+\frac{\partial g}{\partial z}(a, b, c) u_{3}=0$. Therefore, we have $-\frac{\partial g}{\partial z}(a, b, c) \frac{\partial h}{\partial x}(a, b) u_{1}-\frac{\partial g}{\partial z}(a, b, c) \frac{\partial h}{\partial y}(a, b) u_{2}+\frac{\partial g}{\partial z}(a, b, c) u_{3}=0$. By dividing $\frac{\partial g}{\partial z}(a, b, c)$, we achieve our goal.

