MA 1C (SECTION 11) RECITATION 2

TONY WING HONG WONG

1. Total Differentiation

$f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is differentiable at $\mathbf{a} \in \operatorname{int}(D)$ if and only if there exists linear $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\|f(\mathbf{a}+\mathbf{h})-f(\mathbf{a})-L(\mathbf{h})\|_{m}}{\|\mathbf{h}\|_{n}}=0
$$

The total derivative of f at \mathbf{a}, denoted as $T_{\mathbf{a}} f$ or $f^{\prime}(\mathbf{a})$, is L. Each different a may give a different L.

Directional derivative of f at \mathbf{a} in the direction of \mathbf{u} is $T_{a} f(\mathbf{u})$ or $f^{\prime}(\mathbf{a})(\mathbf{u})$, the matrix multiplication of $T_{\mathbf{a}} f$ to \mathbf{u}. It can also be denoted as $f^{\prime}(\mathbf{a} ; \mathbf{u})$. Note that $\mathbf{a} \in D \subseteq \mathbb{R}^{n}$, $\mathbf{u} \in \mathbb{R}^{n}$, and $f^{\prime}(\mathbf{a} ; \mathbf{u}) \in \mathbb{R}^{m}$.

Equivalently, we can define the directional derivative as

$$
f^{\prime}(\mathbf{a} ; \mathbf{u})=\lim _{t \rightarrow 0} \frac{f(\mathbf{a}+t \mathbf{u})-f(\mathbf{a})}{t}
$$

$f^{\prime}(\mathbf{a} ; \mathbf{u})$ exists if and only if $f_{i}^{\prime}(\mathbf{a} ; \mathbf{u})$ exist, and $f^{\prime}(\mathbf{a} ; \mathbf{u})=\left(f_{1}^{\prime}(\mathbf{a} ; \mathbf{u}), \ldots, f_{m}^{\prime}(\mathbf{a} ; \mathbf{u})\right)$.
Partial derivatives are special cases of directional derivatives, using standard unit vectors \mathbf{e}_{i}. We find that $f^{\prime}\left(\mathbf{a} ; \mathbf{e}_{i}\right)=\frac{\partial f}{\partial x_{i}}=\left(\frac{\partial f_{m}}{\partial x_{i}}, \ldots, \frac{\partial f_{m}}{\partial x_{i}}\right)$. (Theoretically, we should write it as a column vector, since it is the column vector $T_{\mathbf{a}} f\left(\mathbf{e}_{i}\right)$.)
$T_{a} f=\left(\begin{array}{cccc}\frac{\partial f_{1}}{\partial x_{1}}(a) & \frac{\partial f_{1}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(a) \\ \frac{\partial f_{2}}{\partial x_{1}}(a) & \frac{\partial f_{2}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{2}}{\partial x_{n}}(a) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(a) & \frac{\partial f_{m}}{\partial x_{2}}(a) & \cdots & \frac{\partial f_{m}}{\partial x_{n}}(a)\end{array}\right)$ provided that total derivative exists.
Total derivative $T_{f}(a)$ exists implies all directional derivative exists, but the converse is not true.
All partial derivatives exist in D and continuous at a implies total derivative $T_{f}(a)$ exists, but the converse is not true.

Gradient $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ is only for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. In fact, gradient is just the total derivative, $\nabla f(\mathbf{a})=T_{\mathbf{a}} f$.

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f^{\prime}(\mathbf{a} ; \mathbf{u})$ is a real number instead of a vector. Its maximum value is $\|\nabla f(a)\|$, and the corresponding \mathbf{u} is in the direction of $\nabla f(a)$.
$f: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is a walk in the space, and we can call $f^{\prime}(t)=\left(f_{1}^{\prime}(t), \ldots, f_{m}^{\prime}(t)\right)$ the velocity vector.

2. Examples

Example 1. Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y^{2}}{x^{2}+y^{4}} & \text { if } x \neq 0, \\ 0 & \text { if } x=0 .\end{array}\right.$ Find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and determine if f is differentiable (i.e. has total derivative) at $(0,0)$.
Solution. When $x \neq 0, \frac{\partial f}{\partial x}=\frac{\left(x^{2}+y^{4}\right) y^{2}-x y^{2}(2 x)}{\left(x^{2}+y^{4}\right)^{2}}=\frac{\left(y^{4}-x^{2}\right) y^{2}}{\left(x^{2}+y^{4}\right)^{2}}$; when $x=0$, we need to use the definition. $\frac{\partial f}{\partial x}(0, y)=\lim _{t \rightarrow 0} \frac{f((0, y)+t(1,0))-f(0, y)}{t}=\lim _{t \rightarrow 0} \frac{f(t, y)-0}{t}=\lim _{t \rightarrow 0} \frac{t y^{2}}{t\left(t^{2}+y^{4}\right)}=\frac{1}{y^{2}}$, which is defined if and only if $y \neq 0$. Note that $\lim _{x \rightarrow 0} \frac{\left(y^{4}-x^{2}\right) y^{2}}{\left(x^{2}+y^{4}\right)^{2}}=\frac{1}{y^{2}}$, so we have $\frac{\partial f}{\partial x}(x, y)=\frac{\left(y^{4}-x^{2}\right) y^{2}}{\left(x^{2}+y^{4}\right)^{2}}$ if $(x, y) \neq(0,0) \cdot \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f((0,0)+t(1,0))-f(0,0)}{t}=0$, so

$$
\frac{\partial f}{\partial x}(x, y)= \begin{cases}\frac{\left(y^{4}-x^{2}\right) y^{2}}{\left(x^{2}+y^{4}\right)^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

We can do the same for $\frac{\partial f}{\partial y}$. Now, partial derivatives exist but are not continuous, so it is inconclusive for the existence of $T_{(0,0)} f$. However, if it exists, $T_{(0,0)} f=\left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right)=$ $(0,0)$, but

$$
\lim _{(s, t) \rightarrow(0,0)} \frac{|f((0,0)+(s, t))-f(0,0)-(0,0) \cdot(s, t)|}{\|(s, t)\|_{2}}=\lim _{(s, t) \rightarrow(0,0)} \frac{s t^{2}}{\left(s^{2}+t^{4}\right) \sqrt{s^{2}+t^{2}}}
$$

does not exist, so it is not equal to 0 . Therefore, the conclusion is f is not differentiable at $(0,0)$.

Example 2. (8.14.4) A differentiable scalar field f has, at the point (1,2), directional derivatives +2 in the direction toward $(2,2)$ and -2 in the direction toward $(1,1)$. Determine the gradient vector at $(1,2)$ and compute the directional derivative in the direction toward $(4,6)$.

Solution. Let the gradient vector $T_{(1,2)} f=(h, k)$. Then $2=T_{(1,2)} f((2,2)-(1,2))=(h, k)$. $(1,0)=h$, and $-2=T_{(1,2)} f((1,1)-(1,2))=(h, k) \cdot(0,-1)=-k$, so $(h, k)=(2,2)$. The directional derivative toward $(4,6)$ is $(2,2) \cdot((4,6)-(1,2))=(2,2) \cdot(3,4)=14$.

Example 3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ such that $f(z)=z^{2}$. Identify \mathbb{C} with \mathbb{R}^{2} and write f as $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.

Solution. Let $z=x+y i$. $z^{2}=(x+y i)^{2}=\left(x^{2}-y^{2}\right)+2 x y i$. Therefore, $f(x, y)=\left(x^{2}-\right.$ $\left.y^{2}, 2 x y\right)$.

