MA 1C (SECTION 11) RECITATION 10

TONY WING HONG WONG

1. TRIGONOMETRIC IDENTITIES

•
$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

• $\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$
• $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
• $\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$
• $\cos 2x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1$
• $\sin 3x = 3 \sin x - 4 \sin^3 x$
• $\cos 3x = 4 \cos^3 x - 3 \cos x$
• $\sin x \cos y = \frac{1}{2}(\sin(x+y) + \sin(x-y))$
• $\sin x \cos y = \frac{1}{2}(\cos(x+y) + \sin(x-y))$
• $\sin x \sin y = -\frac{1}{2}(\cos(x+y) - \cos(x-y))$

2. Examples

Example 1. Evaluate $\iint_S x + y \, dx dy$, where $S = \{(x, y) : |x| + |y| \le 1\}$.

Solution. Note that x+y is a polynomial function and is continuous, and S is a type I region, we can apply Fubini's Theorem to get

$$\begin{aligned} \iint_{S} x + y \, dx dy &= \int_{-1}^{0} \int_{-1-x}^{1+x} x + y \, dy dx + \int_{0}^{1} \int_{-1+x}^{1-x} x + y \, dy dx \\ &= \int_{-1}^{0} \left[xy + \frac{y^{2}}{2} \right]_{-1-x}^{1+x} dx + \int_{0}^{1} \left[xy + \frac{y^{2}}{2} \right]_{-1+x}^{1-x} dx \\ &= \int_{-1}^{0} 2x(1+x) \, dx + \int_{0}^{1} 2x(1-x) \, dx \\ &= \left[x^{2} + \frac{2x^{3}}{3} \right]_{-1}^{0} + \left[x^{2} - \frac{2x^{3}}{3} \right]_{0}^{1} \\ &= 0 - (1 - \frac{2}{3}) + (1 - \frac{2}{3}) - 0 \\ &= 0. \end{aligned}$$

Example 2. Evaluate the line integral $\int_C f \cdot d\alpha$, where $f(x, y) = (x + y)\mathbf{i} + (x + y)\mathbf{j}$, and C is the path from (-1, 1) to (1, 1) along the parabola $y = x^2$.

Solution. Let $\alpha : [-1,1] \to \mathbb{R}^2$ be defined as $\alpha(t) = (t,t^2)$. Then

$$\int_C f \cdot d\alpha = \int_{-1}^1 f(\alpha(t)) \cdot \alpha'(t) dt$$

= $\int_{-1}^1 (t + t^2, t + t^2) \cdot (1, 2t) dt$
= $\int_{-1}^1 t + t^2 + 2t^2 + 2t^3 dt$
= $\left[\frac{t^2}{2} + t^3 + \frac{t^4}{2}\right]_{-1}^1$
= 2.

Another way is to notice that $f(x,y) = \nabla \phi(x,y)$, where $\phi(x,y) = \frac{1}{2}(x+y)^2$, so the line integral is independent of the path. By the second fundamental theorem of calculus for line integrals (Theorem 10.3), $\int_C f \cdot d\alpha = \int_C \nabla \phi \cdot d\alpha = \phi(1,1) - \phi(-1,1) = 2$.

Date: June 6, 2013.

Example 3. Find the area of the region bounded by the curve $\alpha(t) = \sin 2t\mathbf{i} + \sin t\mathbf{j}$ for $t \in [0, \pi]$.

Solution. Let C be the curve and let R be the region bounded by the curve, and let $\alpha(t) = (x(t), y(t))$. We can apply Green's theorem to find the area of this region.

Area =
$$\int_{R} 1 \, dx \, dy$$

= $\frac{1}{2} \int_{C} x \, dy - y \, dx$
= $\frac{1}{2} \int_{0}^{\pi} x(t) y'(t) - y(t) x'(t) \, dt$
= $\frac{1}{2} \int_{0}^{\pi} \sin 2t \cos t - 2 \sin t \cos 2t \, dt$
= $\frac{1}{2} \int_{0}^{\pi} \frac{1}{2} (\sin 3t + \sin t) - (\sin 3t + \sin(-t)) \, dt$
= $\frac{1}{4} \int_{0}^{\pi} -\sin 3t + 3 \sin t \, dt$
= $\frac{1}{4} [\frac{\cos 3t}{3} - 3 \cos t]_{0}^{\pi}$
= $\frac{1}{4} (-\frac{1}{3} + 3 - (\frac{1}{3} - 3))$
= $\frac{4}{3}$.

Example 4. Evaluate $\iiint_S \sqrt{x^2 + y^2} \, dx \, dy \, dz$, where S is the solid formed by the upper nappe of the cone $z^2 = x^2 + y^2$ and the plane z = 1.

Solution. Note that $\sqrt{x^2 + y^2}$ is continuous, and the solid S is bounded, by Fubini's Theorem and cylindrical coordinates,

$$\iint_{S} \sqrt{x^{2} + y^{2}} \, dx \, dy \, dz = \int_{0}^{1} \int_{0}^{2\pi} \int_{r}^{1} r^{2} \, dz \, d\theta \, dr$$

= $2\pi \int_{0}^{1} r^{2} (1 - r) \, dr$
= $2\pi \left[\frac{r^{3}}{3} - \frac{r^{4}}{4} \right]_{0}^{1}$
= $\frac{\pi}{6}$.

Example 5. Let $F(x, y, z) = -z\mathbf{i} + xy\mathbf{k}$. Does there exist a continuously differentiable vector field G such that $F = \nabla \times G$ in \mathbb{R}^3 ? If so, find such a G.

Solution. Since the divergence $\nabla \cdot F = 0$, by Theorem 12.5, there exists a vector field G such that $F = \nabla \times G$. Now, we want to find L(x, y, z), M(x, y, z) and N(x, y, z) such that

$$\frac{\partial N}{\partial y} - \frac{\partial M}{\partial z} = -z, \ \frac{\partial L}{\partial z} - \frac{\partial N}{\partial x} = 0, \ \text{and} \ \frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} = xy.$$

Set N = 0. Then we have $\frac{\partial M}{\partial z} = z$ and $\frac{\partial L}{\partial z} = 0$, or $M(x, y, z) = \frac{z^2}{2} + m(x, y)$ and $L(x, y, z) = \ell(x, y)$. This gives $\frac{\partial m}{\partial x} - \frac{\partial \ell}{\partial y} = xy$. We can take $\ell = 0$, and $m = \frac{x^2 y}{2}$. Therefore, a choice of G(x, y, z) is $(0, \frac{x^2 y + z^2}{2}, 0)$.