MA 1C (SECTION 11) RECITATION 10

TONY WING HONG WONG

1. Trigonometric Identities

- $\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
- $\sin x-\sin y=2 \cos \frac{x^{2}+y}{2} \sin \frac{x-y}{2}$
- $\cos x+\cos y=2 \cos \frac{x^{2}+y}{2} \cos \frac{x-y}{2}$
- $\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$
- $\cos 2 x=1-2 \sin ^{2} x=2 \cos ^{2} x-1$
- $\sin 3 x=3 \sin x-4 \sin ^{3} x$
- $\cos 3 x=4 \cos ^{3} x-3 \cos x$

2. Examples

Example 1. Evaluate $\iint_{S} x+y d x d y$, where $S=\{(x, y):|x|+|y| \leq 1\}$.
Solution. Note that $x+y$ is a polynomial function and is continuous, and S is a type I region, we can apply Fubini's Theorem to get

$$
\begin{aligned}
\iint_{S} x+y d x d y & =\int_{-1}^{0} \int_{-1-x}^{1+x} x+y d y d x+\int_{0}^{1} \int_{-1+x}^{1-x} x+y d y d x \\
& =\int_{-1}^{0}\left[x y+\frac{y^{2}}{2}\right]_{-x}^{1+x} d x+\int_{0}^{1}\left[x y+\frac{y^{2}}{2}\right]_{-1+x}^{1-x} d x \\
& =\int_{-1}^{0} 2 x(1+x) d x+\int_{0}^{1} 2 x(1-x) d x \\
& =\left[x^{2}+\frac{2 x^{3}}{3}\right]_{-1}^{0}+\left[x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{1} \\
& =0-\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{3}\right)-0 \\
& =0 .
\end{aligned}
$$

Example 2. Evaluate the line integral $\int_{C} f \cdot d \alpha$, where $f(x, y)=(x+y) \mathbf{i}+(x+y) \mathbf{j}$, and C is the path from $(-1,1)$ to $(1,1)$ along the parabola $y=x^{2}$.
Solution. Let $\alpha:[-1,1] \rightarrow \mathbb{R}^{2}$ be defined as $\alpha(t)=\left(t, t^{2}\right)$. Then

$$
\begin{aligned}
\int_{C} f \cdot d \alpha & =\int_{-1}^{1} f(\alpha(t)) \cdot \alpha^{\prime}(t) d t \\
& =\int_{-1}^{1}\left(t+t^{2}, t+t^{2}\right) \cdot(1,2 t) d t \\
& =\int_{-1}^{1} t+t^{2}+2 t^{2}+2 t^{3} d t \\
& =\left[\frac{t^{2}}{2}+t^{3}+\frac{t^{4}}{2}\right]_{-1}^{1} \\
& =2 .
\end{aligned}
$$

Another way is to notice that $f(x, y)=\nabla \phi(x, y)$, where $\phi(x, y)=\frac{1}{2}(x+y)^{2}$, so the line integral is independent of the path. By the second fundamental theorem of calculus for line integrals (Theorem 10.3), $\int_{C} f \cdot d \alpha=\int_{C} \nabla \phi \cdot d \alpha=\phi(1,1)-\phi(-1,1)=2$.

Date: June 6, 2013.

Example 3. Find the area of the region bounded by the curve $\alpha(t)=\sin 2 t \mathbf{i}+\sin t \mathbf{j}$ for $t \in[0, \pi]$.
Solution. Let C be the curve and let R be the region bounded by the curve, and let $\alpha(t)=$ $(x(t), y(t))$. We can apply Green's theorem to find the area of this region.

$$
\begin{aligned}
\text { Area } & =\int_{R} 1 d x d y \\
& =\frac{1}{2} \int_{C} x d y-y d x \\
& =\frac{1}{2} \int_{0}^{\pi} x(t) y^{\prime}(t)-y(t) x^{\prime}(t) d t \\
& =\frac{1}{2} \int_{0}^{\pi} \sin 2 t \cos t-2 \sin t \cos 2 t d t \\
& =\frac{1}{2} \int_{0}^{\pi} \frac{1}{2}(\sin 3 t+\sin t)-(\sin 3 t+\sin (-t)) d t \\
& =\frac{1}{4} \int_{0}^{\pi}-\sin 3 t+3 \sin t d t \\
& =\frac{1}{4}\left[\frac{\cos 3 t}{3}-3 \cos t\right]_{0}^{\pi} \\
& =\frac{1}{4}\left(-\frac{1}{3}+3-\left(\frac{1}{3}-3\right)\right) \\
& =\frac{4}{3} .
\end{aligned}
$$

Example 4. Evaluate $\iiint_{S} \sqrt{x^{2}+y^{2}} d x d y d z$, where S is the solid formed by the upper nappe of the cone $z^{2}=x^{2}+y^{2}$ and the plane $z=1$.
Solution. Note that $\sqrt{x^{2}+y^{2}}$ is continuous, and the solid S is bounded, by Fubini's Theorem and cylindrical coordinates,

$$
\begin{aligned}
\iiint_{S} \sqrt{x^{2}+y^{2}} d x d y d z & =\int_{0}^{1} \int_{0}^{2 \pi} \int_{r}^{1} r^{2} d z d \theta d r \\
& =2 \pi \int_{0}^{1} r^{2}(1-r) d r \\
& =2 \pi\left[\frac{r^{3}}{3}-\frac{r^{4}}{4}\right]_{0}^{1} \\
& =\frac{\pi}{6} .
\end{aligned}
$$

Example 5. Let $F(x, y, z)=-z \mathbf{i}+x y \mathbf{k}$. Does there exist a continuously differentiable vector field G such that $F=\nabla \times G$ in \mathbb{R}^{3} ? If so, find such a G.
Solution. Since the divergence $\nabla \cdot F=0$, by Theorem 12.5, there exists a vector field G such that $F=\nabla \times G$. Now, we want to find $L(x, y, z), M(x, y, z)$ and $N(x, y, z)$ such that

$$
\frac{\partial N}{\partial y}-\frac{\partial M}{\partial z}=-z, \frac{\partial L}{\partial z}-\frac{\partial N}{\partial x}=0, \text { and } \frac{\partial M}{\partial x}-\frac{\partial L}{\partial y}=x y
$$

Set $N=0$. Then we have $\frac{\partial M}{\partial z}=z$ and $\frac{\partial L}{\partial z}=0$, or $M(x, y, z)=\frac{z^{2}}{2}+m(x, y)$ and $L(x, y, z)=$ $\ell(x, y)$. This gives $\frac{\partial m}{\partial x}-\frac{\partial \ell}{\partial y}=x y$. We can take $\ell=0$, and $m=\frac{x^{2} y}{2}$. Therefore, a choice of $G(x, y, z)$ is $\left(0, \frac{x^{2} y+z^{2}}{2}, 0\right)$.

