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1. Introduction

Here are some basic information about the TA:

• Office: 304 Kellogg (connected to Sloan);
• Phone: 395-4027;
• Email: tonywong@caltech.edu;
• Webpage: http://www.math.caltech.edu/∼tonywong/ma1c.html;
• Office Hour: Sunday 8pm.

2. Basic topology in Rn

Let x1, x2, . . . , xj, . . . ∈ Rn. We say that this sequence is converging to x ∈ Rn if:
• for all ε > 0, there exists J ∈ N such that for all j ≥ J , ‖xj − x‖ < ε, or
• each component of (xj) forms a convergent sequence in R.

Let S ⊆ Rn. A point x ∈ Rn is

• interior point of S if:
there exists r > 0 such that Bx(r) ⊆ S;
• boundary point of S if:

for all r > 0, Bx(r) ∩ S 6= ∅ and Bx(r) ∩ (Rn\S) 6= ∅, or
there exists a sequence of points s1, s2, . . . , sj, . . . ∈ S such that lim

j→∞
sj = x;

• exterior point of S if:
there exists r > 0 such that Bx(r) ⊆ Rn\S, i.e. x is an interior point of Rn\S.

The collection of interior points of S, boundary points of S and exterior points of S are de-
noted as int(S), ∂S and ext(S) respectively. Note that int(S), ∂S and ext(S) are mutually
disjoint, and int(S) ∪ ∂S ∪ ext(S) = Rn.

S is open if:
• S = int(S), i.e. for all x ∈ S, there exists r > 0 such that Bx(r) ⊆ S.
S is closed if:
• ∂S ⊆ S, i.e. for all convergent sequences s1, s2, . . . , sj, . . . such that lim

j→∞
sj = x, x ∈ S, or

• Rn\S is open.
(The first condition is more for disproving a set S being closed.)

An arbitrary union of open sets and a finite intersection of open sets are open; a finite
union of closed sets and an arbitrary intersection of closed sets are closed.
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The closure of S is S̄, defined as:
• S̄ = S ∪ ∂S, or
• S̄ =

⋂
{T ⊆ Rn : T is closed and S ⊆ T}.

The second condition means S̄ is the smallest closed set containing S, i.e. for all closed T
such that S ⊆ T , we also have S̄ ⊆ T .

S is compact if:
• for an arbitrary open covering of S, there is a finite subcover, or
• for a countable open covering of S, there is a finite subcover.
This is because every open ball, and hence open set, is the union of open balls with rational
centers and rational radii.

Theorem 1 (Heine-Borel). S ⊆ Rn if and only if S is closed and bounded.

In the proof, Prof. Kechris used the fact that for nested intervals I1, I2, . . . such that the
lengths go to 0,

⋂
Ij is a singleton {x}. In fact, if Ij = [aj, bj], then we can show that

x = lim
j→∞

aj = lim
j→∞

bj is inside all Ij. In Rn, we have the same statement by using closed boxes

Cj instead of closed intervals Ij. In fact, we can further generalize it.

Theorem 2 (Cantor’s intersection). If C1, C2, . . . is a sequence of nested, non-empty, closed
and bounded subsets of Rn, then

⋂
Cj 6= ∅.

3. Limit and Continuity

Two ways to view f : D ⊆ Rn → Rm:
• a vector field, or
• a mapping.

Roughly speaking, the limit of a function f at x ∈ D is ` if the function value f(y)
gets close to ` when y gets close to x. Formally, lim

y→x
f(y) = ` if:

for all ε > 0, there exists δ > 0 such that for all y ∈ D satisfying 0 < ‖y − x‖ < δ, we have
‖f(y)− `‖ < ε.

Roughly speaking, f is continuous if anything close together in D is mapped to some-
thing close together in Rm. Formally, f is continuous at x ∈ D if:
lim
y→x

f(y) = f(x), i.e. for all ε > 0, there exists δ > 0 such that for all y ∈ D satisfying

‖y − x‖ < δ, we have ‖f(y)− f(x)‖ < ε.

Conversely, f is discontinuous at x ∈ D if:
• there exists a sequence x1, . . . , xj, . . . ∈ D such that lim

j→∞
xj = x, but lim

j→∞
f(xj) 6= f(x), or

• there exist two sequences x1, . . . , xj, . . . ∈ D and x′1, . . . , x
′
j, . . . ∈ D such that lim

j→∞
xj =

lim
j→∞

x′j = x, but lim
j→∞

f(xj) 6= lim
j→∞

f(x′j).
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4. Examples

Example 1. Show that S = {(x, y, z) ∈ R3 : x2 + y2 < 1} is open.

Solution. In geometric argument, we see that for every point (x, y, z) ∈ S, it is of distance
r > 0 from the closest point on the surface x2 + y2 = 1. So B(x,y,z)(r) ⊆ S, meaning that S
is open.

In rigorous argument, for every point (x, y, z) ∈ S, let r = 1−
√
x2 + y2. Now, for every

point (x′, y′, z′) ∈ B(x,y,z)(r),
√
x′2 + y′2 ≤

√
(x′ − x)2 + (y′ − y)2 +

√
x2 + y2 by triangle

inequality, which is less than or equal to r +
√
x2 + y2 < 1, meaning that (x′, y′, z′) ∈ S.

Hence, B(x,y,z)(r) ⊆ S. Therefore, S is open. �

Example 2. Find the interior and boundary of the set of all irrational numbers S = R\Q.

Solution. For all x ∈ S, for all r > 0, Bx(r) contains both rational and irrational points, so
x /∈ int(S). In other words, int(S) = ∅.

For all x ∈ R, for all r > 0, Bx(r) contains both rational and irrational points, so x ∈ ∂S.
In other words, ∂S = R.
(Hence, S is neither open nor closed since S 6= int(S) and ∂S 6⊆ S.) �

Example 3. Find all (x, y, z) ∈ R3 such that f(x, y, z) = ex
2+yz

x−y is continuous.

Solution. g(x, y, z) = x2 + yz and x− y are polynomials and are continuous, and h(x) = ex

is also continuous, so the composite function h ◦ g(x, y, z) = ex
2+yz is continuous. A rational

function is continuous at all points except those such that the denominator is 0, so ex
2+yz

x−y is

continuous at R3\{(x, y, z) : x = y}.
Since f(x, y, z) are undefined on {(x, y, z) : x = y}, it is not continuous at these points.

Therefore, all the points such that f(x, y, z) is continuous at is R3\{(x, y, z) : x = y}. �
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