MA 1C (SECTION 11) RECITATION 1

TONY WING HONG WONG

1. Introduction

Here are some basic information about the TA:

- Office: 304 Kellogg (connected to Sloan);
- Phone: 395-4027;
- Email: tonywong@caltech.edu;
- Webpage: http://www.math.caltech.edu/~tonywong/ma1c.html;
- Office Hour: Sunday 8pm.

2. Basic TOPOLOGY IN \mathbb{R}^{n}

Let $x_{1}, x_{2}, \ldots, x_{j}, \ldots \in \mathbb{R}^{n}$. We say that this sequence is converging to $x \in \mathbb{R}^{n}$ if:

- for all $\epsilon>0$, there exists $J \in \mathbb{N}$ such that for all $j \geq J,\left\|x_{j}-x\right\|<\epsilon$, or
- each component of $\left(x_{j}\right)$ forms a convergent sequence in \mathbb{R}.

Let $S \subseteq \mathbb{R}^{n}$. A point $x \in \mathbb{R}^{n}$ is

- interior point of S if: there exists $r>0$ such that $B_{x}(r) \subseteq S$;
- boundary point of S if:
for all $r>0, B_{x}(r) \cap S \neq \emptyset$ and $B_{x}(r) \cap\left(\mathbb{R}^{n} \backslash S\right) \neq \emptyset$, or there exists a sequence of points $s_{1}, s_{2}, \ldots, s_{j}, \ldots \in S$ such that $\lim _{j \rightarrow \infty} s_{j}=x$;
- exterior point of S if:
there exists $r>0$ such that $B_{x}(r) \subseteq \mathbb{R}^{n} \backslash S$, i.e. x is an interior point of $\mathbb{R}^{n} \backslash S$.
The collection of interior points of S, boundary points of S and exterior points of S are denoted as $\operatorname{int}(S), \partial S$ and $\operatorname{ext}(S)$ respectively. Note that $\operatorname{int}(S), \partial S$ and $\operatorname{ext}(S)$ are mutually disjoint, and $\operatorname{int}(S) \cup \partial S \cup \operatorname{ext}(S)=\mathbb{R}^{n}$.
S is open if:
- $S=\operatorname{int}(S)$, i.e. for all $x \in S$, there exists $r>0$ such that $B_{x}(r) \subseteq S$.
S is closed if:
- $\partial S \subseteq S$, i.e. for all convergent sequences $s_{1}, s_{2}, \ldots, s_{j}, \ldots$ such that $\lim _{j \rightarrow \infty} s_{j}=x, x \in S$, or
- $\mathbb{R}^{n} \backslash S$ is open.
(The first condition is more for disproving a set S being closed.)
An arbitrary union of open sets and a finite intersection of open sets are open; a finite union of closed sets and an arbitrary intersection of closed sets are closed.

Date: April 4, 2013.

The closure of S is \bar{S}, defined as:

- $\bar{S}=S \cup \partial S$, or
- $\bar{S}=\bigcap\left\{T \subseteq \mathbb{R}^{n}: T\right.$ is closed and $\left.S \subseteq T\right\}$.

The second condition means \bar{S} is the smallest closed set containing S, i.e. for all closed T such that $S \subseteq T$, we also have $\bar{S} \subseteq T$.
S is compact if:

- for an arbitrary open covering of S, there is a finite subcover, or
- for a countable open covering of S, there is a finite subcover.

This is because every open ball, and hence open set, is the union of open balls with rational centers and rational radii.

Theorem 1 (Heine-Borel). $S \subseteq \mathbb{R}^{n}$ if and only if S is closed and bounded.

In the proof, Prof. Kechris used the fact that for nested intervals I_{1}, I_{2}, \ldots such that the lengths go to $0, \bigcap I_{j}$ is a singleton $\{x\}$. In fact, if $I_{j}=\left[a_{j}, b_{j}\right]$, then we can show that $x=\lim _{j \rightarrow \infty} a_{j}=\lim _{j \rightarrow \infty} b_{j}$ is inside all I_{j}. In \mathbb{R}^{n}, we have the same statement by using closed boxes C_{j} instead of closed intervals I_{j}. In fact, we can further generalize it.

Theorem 2 (Cantor's intersection). If C_{1}, C_{2}, \ldots is a sequence of nested, non-empty, closed and bounded subsets of \mathbb{R}^{n}, then $\bigcap C_{j} \neq \emptyset$.

3. Limit and Continuity

Two ways to view $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$:

- a vector field, or
- a mapping.

Roughly speaking, the limit of a function f at $x \in D$ is ℓ if the function value $f(y)$ gets close to ℓ when y gets close to x. Formally, $\lim _{y \rightarrow x} f(y)=\ell$ if:
for all $\epsilon>0$, there exists $\delta>0$ such that for all $y \in D$ satisfying $0<\|y-x\|<\delta$, we have $\|f(y)-\ell\|<\epsilon$.

Roughly speaking, f is continuous if anything close together in D is mapped to something close together in \mathbb{R}^{m}. Formally, f is continuous at $x \in D$ if:
$\lim _{y \rightarrow x} f(y)=f(x)$, i.e. for all $\epsilon>0$, there exists $\delta>0$ such that for all $y \in D$ satisfying $\|y-x\|<\delta$, we have $\|f(y)-f(x)\|<\epsilon$.

Conversely, f is discontinuous at $x \in D$ if:

- there exists a sequence $x_{1}, \ldots, x_{j}, \ldots \in D$ such that $\lim _{j \rightarrow \infty} x_{j}=x$, but $\lim _{j \rightarrow \infty} f\left(x_{j}\right) \neq f(x)$, or
- there exist two sequences $x_{1}, \ldots, x_{j}, \ldots \in D$ and $x_{1}^{\prime}, \ldots, x_{j}^{\prime}, \ldots \in D$ such that $\lim _{j \rightarrow \infty} x_{j}=$ $\lim _{j \rightarrow \infty} x_{j}^{\prime}=x$, but $\lim _{j \rightarrow \infty} f\left(x_{j}\right) \neq \lim _{j \rightarrow \infty} f\left(x_{j}^{\prime}\right)$.

4. Examples

Example 1. Show that $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}<1\right\}$ is open.
Solution. In geometric argument, we see that for every point $(x, y, z) \in S$, it is of distance $r>0$ from the closest point on the surface $x^{2}+y^{2}=1$. So $B_{(x, y, z)}(r) \subseteq S$, meaning that S is open.

In rigorous argument, for every point $(x, y, z) \in S$, let $r=1-\sqrt{x^{2}+y^{2}}$. Now, for every point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in B_{(x, y, z)}(r), \sqrt{x^{\prime 2}+y^{\prime 2}} \leq \sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}+\sqrt{x^{2}+y^{2}}$ by triangle inequality, which is less than or equal to $r+\sqrt{x^{2}+y^{2}}<1$, meaning that $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S$. Hence, $B_{(x, y, z)}(r) \subseteq S$. Therefore, S is open.

Example 2. Find the interior and boundary of the set of all irrational numbers $S=\mathbb{R} \backslash \mathbb{Q}$.
Solution. For all $x \in S$, for all $r>0, B_{x}(r)$ contains both rational and irrational points, so $x \notin \operatorname{int}(S)$. In other words, $\operatorname{int}(S)=\emptyset$.

For all $x \in \mathbb{R}$, for all $r>0, B_{x}(r)$ contains both rational and irrational points, so $x \in \partial S$. In other words, $\partial S=\mathbb{R}$.
(Hence, S is neither open nor closed since $S \neq \operatorname{int}(S)$ and $\partial S \nsubseteq S$.)

Example 3. Find all $(x, y, z) \in \mathbb{R}^{3}$ such that $f(x, y, z)=\frac{e^{x^{2}+y z}}{x-y}$ is continuous.
Solution. $g(x, y, z)=x^{2}+y z$ and $x-y$ are polynomials and are continuous, and $h(x)=e^{x}$ is also continuous, so the composite function $h \circ g(x, y, z)=e^{x^{2}+y z}$ is continuous. A rational function is continuous at all points except those such that the denominator is 0 , so $\frac{e^{x^{2}+y z}}{x-y}$ is continuous at $\mathbb{R}^{3} \backslash\{(x, y, z): x=y\}$.

Since $f(x, y, z)$ are undefined on $\{(x, y, z): x=y\}$, it is not continuous at these points. Therefore, all the points such that $f(x, y, z)$ is continuous at is $\mathbb{R}^{3} \backslash\{(x, y, z): x=y\}$.

