MA 1C CALCULUS OF ONE AND SEVERAL VARIABLES AND LINEAR ALGEBRA, ANALYTICAL TRACK

LECTURE 15

1. Examples and Applications

1.1. Volume below the graph of a function.

Let $B=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$, and let $f: B \rightarrow[0, \infty)$ be a continuous function. Let $C=$ $\{(x, y, z):(x, y) \in B$ and $0 \leq z \leq f(x, y)\}$.

We have defined $\operatorname{vol}(C)=\iiint_{C} 1 d x d y d z$. We will now see (as in the case of one variable) that $\operatorname{vol}(C)=\iint_{B} f(x, y) d x d y$, which is the "volume of the solid below the graph of f ".

Indeed, by Fubini's theorem,
$\iiint_{C} 1 d x d y d z=\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{b_{2}}\left(\int_{0}^{f(x, y)} 1 d z\right) d y\right) d x=\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{b_{2}} f(x, y) d y\right) d x=\iint_{B} f(x, y) d x d y$.
Note that $A(x):=\int_{a_{2}}^{b_{2}} f(x, y) d y$ for $x \in\left[a_{1}, b_{1}\right]$ is the area of a slice of C by a plane parallel to the (y, z)-plane, so $\operatorname{vol}(C)$ is the integral of the area of these slices.

1.2. Volumne of the ellipsoid.

Let $E=\left\{(x, y, z): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\}$, where $a, b, c>0$.
By applying Fubini's theorem,

$$
\begin{aligned}
& \operatorname{vol}(E)=\iiint_{E} 1 d x d y d z \\
& =\int_{-a}^{a}\left(\int_{-b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b \sqrt{1-\left(\frac{x}{2}\right)^{2}}}\left(\int_{-c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}}^{c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}}} 1 d z\right) d y\right) d x \\
& =\int_{-a}^{a}\left(\int_{-b \sqrt{1-\left(\frac{x}{a}\right)^{2}}}^{b \sqrt{1-\left(\frac{x}{a}\right)^{2}}} 2 c \sqrt{1-\left(\frac{x}{a}\right)^{2}-\left(\frac{y}{b}\right)^{2}} d y\right) d x \\
& =\int_{-a}^{a} \pi b c\left(1-\left(\frac{x}{a}\right)^{2}\right) d x \quad \text { (by substitution of sin function) } \\
& =\pi b c\left[x-\frac{x^{3}}{3 a^{2}}\right]_{-a}^{a}=\frac{4}{3} \pi a b c .
\end{aligned}
$$

In particular, the volume of the unit ball is $\frac{4 \pi}{3}$ since $a=b=c=1$.

1.3. Volume of the tetrahedron.

Let $T=\{(x, y, z): x, y, z \geq 0, x+y+z \leq 1\}$. This is the solid under the function $f(x, y)=1-x-y$, where f is defined on the triangle $\{(x, y): x, y \geq 0, x+y \leq 1\}$.

By Section 1.1,

$$
\begin{aligned}
\operatorname{vol}(T) & =\iint_{T} 1-x-y d x d y \\
& =\int_{0}^{1}\left(\int_{0}^{1-x} 1-x-y d y\right) d x \\
& =\int_{0}^{1}\left[y-x y-\frac{y^{2}}{2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1}(1-x)-x(1-x)-\frac{(1-x)^{2}}{2} d x \\
& =\int_{0}^{1} \frac{(x-1)^{2}}{2} d x \\
& =\left[\frac{(x-1)^{3}}{6}\right]_{0}^{1}=\frac{1}{6} .
\end{aligned}
$$

1.4. Pappus' Theorem. (c. 290-350 AD)

Let $\psi, \phi:[a, b] \rightarrow[0, \infty)$ such that $\psi \geq \phi$, i.e. $\psi(x) \geq \phi(x)$ for all $x \in[a, b]$. We can then rotate the region bounded by $\psi, \phi, x=a$, and $x=b$ about the x-axis to form a solid of revolution S. We are going to calculate the volume of S.

Consider the solid of revolution where we rotate $\{(x, y): a \leq x \leq b$ and $y \leq \psi(x)\}$; call it S_{1}. Similarly, the solid of revolution for $\{(x, y): a \leq x \leq b$ and $y \leq \phi(x)\}$ is called S_{2}. Then $\operatorname{vol}(S)=\operatorname{vol}\left(S_{1}\right)-\operatorname{vol}\left(S_{2}\right)$ (note that the boundaries can be ignored since the surface of revolution of ϕ has content 0).

Now, $S_{1}=\left\{(x, y, z): a \leq x \leq b,-\psi(x) \leq y \leq \psi(x),-\sqrt{\psi(x)^{2}-y^{2}} \leq z \leq \sqrt{\psi(x)^{2}-y^{2}}\right\}$, since for each x, the slice of S_{1} is a disc in the (y, z)-plane of radius $\psi(x)$.

$$
\begin{aligned}
\operatorname{vol}\left(S_{1}\right) & =\int_{a}^{b}\left(\int_{-\psi(x)}^{\psi(x)}\left(\int_{-\sqrt{\psi(x)^{2}-y^{2}}}^{\sqrt{\psi(x)^{2}-y^{2}}} 1 d z\right) d y\right) d x \\
& =\int_{a}^{b}\left(\int_{-\psi(x)}^{\psi(x)} 2 \sqrt{\psi(x)^{2}-y^{2}} d y\right) d x \\
& =\int_{a}^{b} \pi \psi(x)^{2} d x .
\end{aligned}
$$

Geometrically, for each $x \in[a, b], \pi \psi(x)^{2}$ is the area of the disc with radius $\psi(x)$, and $\operatorname{vol}\left(S_{1}\right)$ is the integral of these areas, according to Section 1.1.

Similarly, for $S_{2}, \operatorname{vol}\left(S_{2}\right)=\int_{a}^{b} \pi \phi(x)^{2} d x$. Hence, $\operatorname{vol}(S)=\pi \int_{a}^{b} \psi(x)^{2}-\phi(x)^{2} d x$.
Definition. The centroid of a Jordan measurable bounded set $Q \subseteq \mathbb{R}^{2}$ is the point

$$
\left(\bar{x}_{Q}, \bar{y}_{Q}\right)=\left(\frac{\iint_{Q} x d x d y}{\operatorname{area}(Q)}, \frac{\iint_{Q} y d x d y}{\operatorname{area}(Q)}\right) .
$$

Note that $\operatorname{area}(Q)=\iint_{Q} 1 d x d y$, which is the 2-dimensional volume. In fact, the first coordinate gives the average distance from $(x, y) \in Q$ to y-axis, and the second coordinate gives the average distance from $(x, y) \in Q$ to x-axis. The centroid is the center of mass of Q if it has density 1 .

In our case of type I region, $\bar{y}=\frac{\int_{a}^{b}\left(\int_{\phi(x)}^{\psi(x)} y d y\right) d x}{A}=\frac{\int_{a}^{b} \psi(x)^{2}-\phi(x)^{2} d x}{2 A}$, where A is the area of the region.

Therefore, $\operatorname{vol}(S)=2 \pi \bar{y} A=2 \pi \times($ average distance of Q from axis of revolution $) \times$ area.
Example. The volume of a torus, obtained by revolving a circle centered at (a, b) and radius r about x-axis can be given by $2 \pi b\left(\pi r^{2}\right)=2 \pi^{2} b r^{2}$, since it is obvious that $\bar{y}=b$.

