MA 17 - HOW TO SOLVE IT LECTURE 5

TONY WING HONG WONG

1. Analysis

(2011 B3) (*) Let f and g be (real-valued) functions defined on an open interval containing 0 , with g nonzero and continuous at 0 . If $f g$ and f / g are differentiable at 0 , must f be differentiable at 0 ?
(2010 A6) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a strictly decreasing continuous function such that $\lim _{x \rightarrow \infty} f(x)=0$. Prove that $\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x$ diverges.
(2010 B5) Is there a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x ?
(2009 B5) (*) Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$$
f^{\prime}(x)=\frac{x^{2}-(f(x))^{2}}{x^{2}\left((f(x))^{2}+1\right)} \text { for all } x>1
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=\infty$.
(2008 A4) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
(2008 B2) $\left(^{*}\right)$ Let $F_{0}(x)=\ln x$. For $n \geq 0$ and $x>0$, let $F_{n+1}(x)=\int_{0}^{x} F_{n}(t) d t$. Evaluate

$$
\lim _{n \rightarrow \infty} \frac{n!F_{n}(1)}{\ln n} .
$$

(2004 B5) Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

(1994 A1) $\left(^{*}\right)$ Suppose that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $0<a_{n} \leq a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
(1988 A3) Determine, with proof, the set of real numbers x for which

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \csc \frac{1}{n}-1\right)^{x}
$$

converges.
(1988 B4) (*) Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty}\left(a_{n}\right)^{n / n+1}$.

2. Homework

Please submit your work on three of the problems that are marked with an asterisk $\left(^{*}\right)$.

