MA 17 - HOW TO SOLVE IT LECTURE 4

TONY WING HONG WONG

1. Calculus

(2009 A6) Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y, b=\int_{0}^{1} f(1, y) d y$, $c=\int_{0}^{1} f(x, 0) d x, d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point $\left(x_{0}, y_{0}\right)$ in $(0,1)^{2}$ such that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=b-a \text { and } \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=d-c .
$$

(2007 B2) Suppose that $f:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$,

$$
\left|\int_{0}^{\alpha} f(x) d x\right| \leq \frac{1}{8} \max _{0 \leq x \leq 1}\left|f^{\prime}(x)\right| .
$$

(2006 A1) (*) Find the volume of the region of points (x, y, z) such that

$$
\left(x^{2}+y^{2}+z^{2}+8\right)^{2} \leq 36\left(x^{2}+y^{2}\right) .
$$

(2006 B5) ${ }^{*}$) For each continuous function $f:[0,1] \rightarrow \mathbb{R}$, let $I(f)=\int_{0}^{1} x^{2} f(x) d x$ and $J(x)=\int_{0}^{1} x(f(x))^{2} d x$. Find the maximum value of $I(f)-J(f)$ over all such functions f.
(2005 A5) Evaluate $\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$.
(1985 A5) (*) Let $I_{m}=\int_{0}^{2 \pi} \cos (x) \cos (2 x) \cdots \cos (m x) d x$. For which integers $m, 1 \leq m \leq 10$ is $I_{m} \neq 0$?
(1985 B2) $\left(^{*}\right)$ Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x} f_{n+1}(x)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

2. Differential Equations

(2010 A3) Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.
(2009 A2) Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{array}{cc}
f^{\prime}=2 f^{2} g h+\frac{1}{g h}, & f(0)=1, \\
g^{\prime}=f g^{2} h+\frac{4}{f h}, & g(0)=1, \\
h^{\prime}=3 f g h^{2}+\frac{1}{f g}, & h(0)=1 .
\end{array}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0 .
(2005 B5) $\left(^{*}\right)$ Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) }
$$

and that

$$
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right)
$$

Show that $P=0$ identically.
(1988 A2) (*) A not uncommon calculus mistake is to believe that the product rule for derivatives says that $(f g)^{\prime}=f^{\prime} g^{\prime}$. If $f(x)=e^{x^{2}}$, determine, with proof, whether there exists an open interval (a, b) and a nonzero function g defined on (a, b) such that this wrong product rule is true for x in (a, b).
(1987 A3) $\left(^{*}\right)$ For all real x, the real-valued function $y=f(x)$ satisfies

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{x} .
$$

(a) If $f(x)>0$ for all real x, must $f^{\prime}(x)>0$ for all real x ? Explain.
(b) If $f^{\prime}(x)>0$ for all real x, must $f(x)>0$ for all real x ? Explain.

3. Homework

Please submit your work on three of the problems that are marked with an asterisk $\left(^{*}\right)$, with at least one problem in each section.

