MA 17 - HOW TO SOLVE IT LECTURE 3

TONY WING HONG WONG

1. Polynomials

(1952 A1) The polynomial $p(x)$ has all integral coefficients. The leading coefficient, the constant term, and $p(1)$ are all odd. Show that $p(x)$ has no rational roots.
(2011 B2) (*) Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational number x satisfies $p x^{2}+q x+r=0$. Which primes appear in seven or more elements of S ?
(2010 B4) Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which

$$
p(x) q(x+1)-p(x+1) q(x)=1
$$

(2008 B4) Let p be a prime number. Let $h(x)$ be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h\left(p^{2}-1\right)$ are distinct modulo p^{2}. Show that $h(0), h(1), \ldots, h\left(p^{3}-1\right)$ are distinct modulo p^{3}.
(2007 B1) $\left(^{*}\right)$ Let f be a polynomial with positive integer coefficients. Prove that if n is a positive integer, then $f(n)$ divides $f(f(n)+1)$ if and only if $n=1$. [Note: one must assume f is nonconstant.]
(2007 B4) Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(X))^{2}+(Q(X))^{2}=X^{2 n}+1
$$

and $\operatorname{deg} P>\operatorname{deg} Q$.
(2004 B1) $\left(^{*}\right)$ Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r, \ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
$$

are integers.

2. Functions

(2010 A2) $\left(^{*}\right)$ Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}
$$

for all real numbers x and all positive integers n.
(2010 B5) Is there a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x ?
(2008 A1) $\left(^{*}\right)$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a function such that $f(x, y)+f(y, z)+f(z, x)=0$ for all real numbers x, y, and z. Prove that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x, y)=g(x)-g(y)$ for all real numbers x and y.
(2005 B3) Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.
(2000 B4) Let $f(x)$ be a continuous function such that $f\left(2 x^{2}-1\right)=2 x f(x)$ for all x. Show that $f(x)=0$ for $-1 \leq x \leq 1$.

3. Homework

Please submit your work on three of the problems that are marked with an asterisk $\left(^{*}\right)$, with at least problem in each section.

