
Gnu Debugger (gdb)

Debuggers are used to:

• Find semantic errors

• Locate seg faults and bus errors

Prepared by Dr. Spiegel

Using GDB

• When to use a debugger?

– Sometimes you can figure out errors just by using
cout (print statements)

• Incorrect output

• Unexpected executions

– Debuggers permit fine-tuned control

• An absolute must for finding subtle and more complex
errors

– Debuggers quickly provide the location of run-
time errors

Using GDB

• Basic Functions of a Debugger:

– Run Program & Enter/Exit Debug Mode

– In Debug Mode:
• Control Execution

• Watch Things

The best option is usually to run gdb inside emacs

Using GDB

• First step: Compile the program with flag
for debugging
– Flag: -g

• Instructs the compiler to retain user’s code
–Otherwise, resulting machine code bears no

resemblence to original code

• Note use of –g in makefile (example in next slide)
– In makefile, -g employed easily via macro

Array Debug Example’s Makefile

DebugFlag=-g

debug: Array.o ArrayDebug.o

 g++ -o debug Array.o ArrayDebug.o $(DebugFlag)

ArrayDebug.o: ArrayDebug.cpp Array.h

 g++ -c ArrayDebug.cpp $(DebugFlag)

Array.o: Array.cpp Array.h

 g++ -c Array.cpp $(DebugFlag)

Macro (const declaration)

If –g is removed from macro, $(DebugFlag) is replaced by nothing

Replaces

Starting GDB

• Run gdb inside emacs
– Provides dual window environment

• Top window: Command environment
• Bottom Window: Code Being Debugged

1. Build Using make
2. Start emacs
3. ESC-x (Display at bottom: M-x)
4. gdb <Enter> <Enter>

You will be in the debugging environment
There will be a single window at this time

Run Program & Enter/Exit Debug Mode

• Breakpoints

– Designate a location where execution is suspended and
debug mode entered

– Command:

 break <argument>

– Three possibilities for <argument>
• line number

• function name

• PC address

Note: Underlined character(s) in command are shortcuts

Run Program & Enter/Exit Debug Mode

• Break Command Arguments

– line number

• Use <file name>:<line number> in other files
– Example: b Array.cpp:121

• Can appear alone in application file (some versions of gdb only)

– function name

• Can appear alone in application file

• Use <class name>::<function name> in other files
– Example: b Array::~Array

– PC address

• Preface address with *

• More commonly used with assembler code

Note: Tab completion for setting breakpoints is available

Run Program & Enter/Exit Debug Mode

• Set up breakpoints before starting the program

• Run the program
– Command: run <cmd line argument(s)>

• program will run until it hits a breakpoint

• Resume execution:
– Command: continue

You can also use run to restart a currently running program if you
want to go back to the beginning

Run Program & Enter/Exit Debug Mode

• When a breakpoint is encountered:
– Execution stops
– The screen will split

• New window opens showing current file with arrow (=>) to current
line

– this line hasn’t actually been executed yet

– Program is in debug mode
• Use debugger commands

– Control
– Watch

• Removing Breakpoints
– Once a breakpoint’s usefulness has ended it may be removed
– Command: delete <breakpoint number>

• No argument will cause prompt to delete all breakpoints
• Breakpoint number is by order breakpoints were established

– given when created or when reached during execution

Control Execution

Run one line at a time
• Commands:

– step
– next

• The difference between step and next is when
the current statement is a function call
– next executes the function

• If function has breakpoint, it will stop there and re-enter
debug mode

– step enters the function to debug it
• Stops at first line to await next command

Control Execution

• Other commands:
– finish

• Resume execution until end of current function or a
breakpoint is encountered

– up <# frames>

• Go up the number of functions indicated in the stack

• I the argument is 1, goes to the line where the current
function was called

– down <# frames>

• Opposite of up

Control Execution

Entering a function
• When a function is entered, gdb displays

information about this call
– Name of function
– Parameters, including values

• Pitfall: Entering a library function
– e.g. The stream insertion operator

• The window footer gives file name and line number

– DO NOT try to debug in here
• Use fin to exit back to where you entered

Watching Stuff

• View variable and test functions
– Commands:

• print
• display (no shortcut key)

– print displays value of its argument
• argument can be quite intricate

– array : shows address; you can supply subscript
– object: will try to provide value of all members
– if item is address, * can be used to dereference
– argument can be function call!!

» function will be executed

– display is a persistent print
• shows argument value after each command when argument is in

scope

Finding Causes of Crashes

• Run-time Errors’ Location(s) are not Reported
in Unix

– Must use gdb to find the location and examine
program state at time of crash

– Usually, the state at the time of crash is preserved

• If not, once location is determined, set breakpoint
before line of crash to examine variables, etc;

– Procedure

Determine Location of Crash

• Steps to find location:

1. Start debugger

2. Run program using same input
• No breakpoints; just let it crash

3. Use where command to show run-time stack

• displays sequence of function calls to arrive at current location

• Each function’s call in the stack is numbered

• Find the 1st function in the list that you wrote. Note the number X
– The first several functions may be library functions

4. Issue command up <X>
• Screen will split and display line where crash occurred (=> denotes)

• Use print or display to examine variables for irregularities.

Resources

• Quick Primer by Dr. Spiegel

• Complete Manual - Delore.com

• GDB Cheat Sheet

• YoLinux Command Cheat Sheet

http://faculty.kutztown.edu/spiegel/Debugging/DebugPrimer.htm
http://www.delorie.com/gnu/docs/gdb/gdb.html#SEC_Top
http://www.delorie.com/gnu/docs/gdb/gdb.html#SEC_Top
http://www.delorie.com/gnu/docs/gdb/gdb.html#SEC_Top
http://www.delorie.com/gnu/docs/gdb/gdb.html#SEC_Top
http://faculty.kutztown.edu/spiegel/GDB_CheatSheet.pdf
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html
http://www.yolinux.com/TUTORIALS/GDB-Commands.html

