
Project 1 CSC 552

Points: 25
Due: TBA. Late submissions are at your own risk.
Purpose: Practice system calls open, exec family, fork; binary encoding of files

Assignment: Write programs to handle separate tasks and another program that simulates
the shell by running them sequentially. The programs you will call:

• Convert a file of comma-separated data into a binary encoded file
o Arguments: Input file name and output file name (via command line)

• Prints the first n records in a binary encoded file
o Arguments: File name, # records (via command line)

Your primary program, named p1 will perform a simplified simulation of the shell that will
itself run two other programs, in order, to accomplish a task. From the command line, start
p1. It takes as its command-line arguments names of programs, data files, and an integer.

The first program (call this executable createBin) takes two file names from its command
line. The first is a comma separated file of data that you will prepare from a database noted
below and use as the source. The second is a destination file whose data will be stored in
binary form. This file should have type .bin.

The second program (call this executable printRecs) will receive the name of a binary
encoded file (written specifically for your chosen data set) from its command line, and an
integer numRecords. It will print the first numRecords records in that file, well-labeled. Then,
it will loop, allowing the user to select a record to print by entering the record number. The
prompt should provide the allowable range; the program will ignore out-of-range entries. The
record to be printed is to be accessed in the file via a seek command. The program may not
hold more than one record at any time in RAM. The loop will terminate on entry of -1.

p1 forks a child that execs the program named as its 2nd command line argument
(createBin) to count the words in the named data file. The 3rd and 4th command-line
arguments are the .csv input file and the .bin output file. createBin creates the binary file,
and its main() returns the number of records that were stored. The parent that was waiting
for its child now obtains this value via the exported argument of the wait() and prints it, well-
labeled. The parent checks the returned value against the 6th command-line argument (#
records to print). It forks another child, and this child execs the program named as the
parent’s 5th command line argument (printRecs), passing it the name of the .bin file. It also
passes the lesser value between the 6th command-line argument and the value returned by
createBin. The parent again waits, terminating once its child terminates.

Project 1 CSC 552

Notes:

• One suggested but not required source for the data is in our library. It is a knowledge base named
Statista. Choose a data set. It must have at least four fields and at least 10 records (but not more
than 25; you can select from a larger set). Claim it in the Claim Data Set forum on D2L. You may
not use one that anyone else has claimed. First come, first served.

o The data can (and will) be saved in cvs form. Then, clean out the non-data stuff (headers,
etc).

o Link: http://library.kutztown.edu/statista You’ll likely need to login.

• The 1st command line argument of any program in C or C++ is the name of the program itself.

• If any file can’t be opened, that program should return a value that the parent p1 process
recognizes, causing a contextual error message to be printed, after which p1 exits.

o This will be tested.

• You must use all three file handle types, file descriptor, file pointer and stream, between the two
programs p1 will call.

o Use of fdopen() is permitted

• If numRecords exceeds the number of records in the .bin file, all records are printed.

• All programs are to be executable on their own. For example, the first 5 records in test.bin should
be output if you issue printRecs test.bin 5 on the command line.

• Reading and writing of a binary record must occur en masse, i.e. the entire record must be read
or written with a single command. This is the only permitted access in a binary encoded file.

• A child process is provided a copy of its parent’s data space.

• An exec’d process replaces its caller’s text, data, heap, and stack segment. It retains its caller’s
pid (how does that affect a wait()?).

• p1 is to use execvp to execute createBin, simply passing its argv vector translated one element
forward.

• p1 is to use execlp to execute printRecs. Don’t forget to be sure the last command line argument
in the execlp() command is NULL.

• Your programs must all be properly modular and documented appropriately.
o Create a robust Doxygen site. Doxygen is a prominent documenting tool that has several

links to documentation and tutorials on the instructor’s links page. In particular, basic
Doxygen use is described here:
http://faculty.kutztown.edu/spiegel/Documentation/Doxygen/WorkingWithDoxygen.pdf
See: https://faculty.kutztown.edu/spiegel/CSc237/Examples/DoxygenDemo/PolygonList/

▪ This project is not object-oriented, so \class tags won’t be used, but \file and other
tags are to be used so that all items in lists have a brief coarse-grained description.

▪ A mainpage.dox file should be created in your directory to provide an overall
description on the front page of your Doxygen site.

o Submit a readme with the Doxygen link. You can also provide any other information you
care to include that might be useful to the grading process.

Deliverables:
D2L: Your readme. One file in the Phase 1 dropbox.
Turnin: 3 cpp files, named p1.cpp, createBin.cpp, and printRecs.cpp. You must also submit a
properly written makefile that builds all three executables with its default target. Each executable
MUST also be able to be made on its own on the command line by entering make <exec name>
(e.g. make createBin). Your program will NOT be graded if you do not submit a proper makefile. 2-
5 points penalized for using file names other than those specified (case sensitive).

http://library.kutztown.edu/statista
http://faculty.kutztown.edu/spiegel/Documentation/Doxygen/WorkingWithDoxygen.pdf
https://faculty.kutztown.edu/spiegel/CSc237/Examples/DoxygenDemo/PolygonList/

