

Splay Trees

Static Optimality

Balanced BSTs

● We've explored balanced BSTs this quarter because
they guarantee worst-case O(log n) operations.

● Claim: Depending on the access sequence, balanced
BSTs may not be optimal BSTs.

1

2

3

4

5

6

7

Balanced BSTs

● We've explored balanced BSTs this quarter because
they guarantee worst-case O(log n) operations.

● Claim: Depending on the access sequence, balanced
BSTs may not be optimal BSTs.

2

5

4

3

6

7

1

Static Optimality

● Let S = { x₁, x₂, …, xₙ } be a set with
access probabilities p₁, p₂, …, pₙ.

● Goal: Construct a binary search tree T*
that minimizes the total expected access
time.

● T* is called a statically optimal binary
search tree.

Static Optimality

● There is an O(n2)-time dynamic programming
algorithm for constructing statically optimal
binary search trees.
● Knuth, 1971

● There is an O(n log n)-time greedy algorithm
for constructing binary search trees whose cost
is within 1.5 of optimal.
● Mehlhorn, 1975

● These algorithms assume that the access
probabilities are known in advance.

Challenge: Can we construct an optimal
BST without knowing the access

probabilities in advance?

The Intuition

● If we don't know the access probabilities
in advance, we can't build a fixed BST
and then “hope” it works correctly.

● Instead, we'll have to restructure the
BST as operations are performed.

● For now, let's focus on lookups; we'll
handle insertions and deletions later on.

Refresher: Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

An Initial Idea

● Begin with an arbitrary BST.
● After looking up an element, repeatedly

rotate that element with its parent until it
becomes the root.

● Intuition:
● Recently-accessed elements will be up near

the root of the tree, lowering access time.
● Unused elements stay low in the tree.

The Problem

A

B

C

D

E

The Problem

● The “rotate to root” method might result
in n accesses taking time Θ(n2).

● Why?
● Rotating an element x to the root

significantly “helps” x, but “hurts” the
rest of the tree.

● Most of the nodes on the access path to x
have depth that increases or is
unchanged.

A More Balanced Approach

● In 1983, Daniel Sleator and Robert
Tarjan invented an operation called
splaying.

● Rotates an element to the root of the
tree, but does so in a way that's more
“fair” to other nodes in the tree.

● There are three cases for splaying.

Case 1: Zig-Zig

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

First, rotate p with g
Then, rotate x with p

Continue moving x up the tree

First, rotate p with g
Then, rotate x with p

Continue moving x up the tree

Case 2: Zig-Zag

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

First, rotate x with p
Then, rotate x with g

Continue moving x up the tree

First, rotate x with p
Then, rotate x with g

Continue moving x up the tree

Case 3: Zig

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

Rotate x with r
x is now the root.

Rotate x with r
x is now the root.

(Assume r is the
tree root)

(Assume r is the
tree root)

Splaying, Empirically

● Splaying nodes that are deep in the tree
tends to correct the tree shape.

● Why is this?
● Is this a coincidence?

Why Splaying Works

● Claim: After doing a splay at x, the
average depth of any nodes on the access
path to x is halved.

● Intuitively, splaying x benefits nodes near
x, not just x itself.

● This “altruism” will ensure that splays
are efficient.

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

The average depth of x,
p, and g is unchanged.

The average depth of x,
p, and g is unchanged.

These subtrees decrease
in height by one or two.

These subtrees decrease
in height by one or two.

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

The average height of x, p,
and g decreases by 1/3.

The average height of x, p,
and g decreases by 1/3.

These subtrees have their
height decreased by one.

These subtrees have their
height decreased by one.

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

There is no net
change in the

height of x or r.

There is no net
change in the

height of x or r.

The nodes in this subtree have
their height decreased by one.

The nodes in this subtree have
their height decreased by one.

An Intuition for Splaying

● Each rotation done only slightly
penalizes each other part of the tree (say,
adding +1 or +2 depth).

● Each splay rapidly cuts down the height
of each node on the access path.

● Slow growth in height, combined with
rapid drop in height, is a hallmark of
amortized efficiency.

Making Things Easy

● Splay trees provide make it extremely
easy to perform the following operations:
● lookup
● insert
● delete
● predecessor / successor
● join
● split

● Let's see why.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Join

● To join two trees T₁ and T₂, where all
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T₁

k

T₂

The Runtime

● Claim: All of these operations require
amortized time O(log n).

● Rationale: Each has runtime bounded
by the cost of O(1) splays, which takes
total amortized time O(log n).

● Contrast this with red/black trees:
● No need to store any kind of balance

information.
● Only three rules to memorize.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

