Splay Trees

Static Optimality

Balanced BSTs

- We've explored balanced BSTs this quarter because they guarantee worst-case O(log *n*) operations.
- **Claim:** Depending on the access sequence, balanced BSTs may not be optimal BSTs.

Balanced BSTs

- We've explored balanced BSTs this quarter because they guarantee worst-case O(log *n*) operations.
- **Claim:** Depending on the access sequence, balanced BSTs may not be optimal BSTs.

Static Optimality

- Let $S = \{ x_1, x_2, ..., x_n \}$ be a set with access probabilities $p_1, p_2, ..., p_n$.
- **Goal:** Construct a binary search tree *T** that minimizes the total expected access time.
- *T** is called a *statically optimal binary search tree*.

Static Optimality

- There is an $O(n^2)$ -time dynamic programming algorithm for constructing statically optimal binary search trees.
 - Knuth, 1971
- There is an O(n log n)-time greedy algorithm for constructing binary search trees whose cost is within 1.5 of optimal.
 - Mehlhorn, 1975
- These algorithms assume that the access probabilities are known in advance.

Challenge: Can we construct an optimal BST without knowing the access probabilities in advance?

The Intuition

- If we don't know the access probabilities in advance, we can't build a fixed BST and then "hope" it works correctly.
- Instead, we'll have to restructure the BST as operations are performed.
- For now, let's focus on lookups; we'll handle insertions and deletions later on.

Refresher: Tree Rotations

An Initial Idea

- Begin with an arbitrary BST.
- After looking up an element, repeatedly rotate that element with its parent until it becomes the root.

• Intuition:

- Recently-accessed elements will be up near the root of the tree, lowering access time.
- Unused elements stay low in the tree.

The Problem

The Problem

- The "rotate to root" method might result in *n* accesses taking time $\Theta(n^2)$.
- Why?
- Rotating an element *x* to the root significantly "helps" *x*, but "hurts" the rest of the tree.
- Most of the nodes on the access path to x have depth that increases or is unchanged.

A More Balanced Approach

- In 1983, Daniel Sleator and Robert Tarjan invented an operation called *splaying*.
- Rotates an element to the root of the tree, but does so in a way that's more "fair" to other nodes in the tree.
- There are three cases for splaying.

Case 1: Zig-Zig

Case 2: Zig-Zag

Case 3: Zig

(Assume r is the tree root)

Splaying, Empirically

- Splaying nodes that are deep in the tree tends to correct the tree shape.
- Why is this?
- Is this a coincidence?

Why Splaying Works

- **Claim:** After doing a splay at *x*, the average depth of any nodes on the access path to *x* is halved.
- Intuitively, splaying x benefits nodes near x, not just x itself.
- This "altruism" will ensure that splays are efficient.

The average depth of *x*, *p*, and *g* is unchanged.

An Intuition for Splaying

- Each rotation done only slightly penalizes each other part of the tree (say, adding +1 or +2 depth).
- Each splay rapidly cuts down the height of each node on the access path.
- Slow growth in height, combined with rapid drop in height, is a hallmark of amortized efficiency.

Making Things Easy

- Splay trees provide make it extremely easy to perform the following operations:
 - lookup
 - insert
 - delete
 - predecessor / successor
 - join
 - split
- Let's see why.

Lookups

- To do a lookup in a splay tree:
 - Search for that item as usual.
 - If it's found, splay it up to the root.
 - Otherwise, splay the last-visited node to the root.

Insertions

- To insert a node into a splay tree:
 - Insert the node as usual.
 - Splay it up to the root.

Join

- To join two trees T_1 and T_2 , where all keys in T_1 are less than the keys in T_2 :
 - Splay the max element of T_1 to the root.
 - Make T_2 a right child of T_1 .

Split

- To split *T* at a key *k*:
 - Splay the successor of *k* up to the root.
 - Cut the link from the root to its left child.

Delete

- To delete a key *k* from the tree:
 - Splay *k* to the root.
 - Delete k.
 - Join the two resulting subtrees.

The Runtime

- **Claim:** All of these operations require amortized time O(log *n*).
- **Rationale:** Each has runtime bounded by the cost of O(1) splays, which takes total amortized time O(log *n*).
- Contrast this with red/black trees:
 - No need to store any kind of balance information.
 - Only three rules to memorize.