
  

Splay Trees



  

Static Optimality



  

Balanced BSTs

● We've explored balanced BSTs this quarter because 
they guarantee worst-case O(log n) operations.

● Claim: Depending on the access sequence, balanced 
BSTs may not be optimal BSTs.
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Static Optimality

● Let S = { x₁, x₂, …, xₙ } be a set with 
access probabilities p₁, p₂, …, pₙ.

● Goal: Construct a binary search tree T* 
that minimizes the total expected access 
time.

● T* is called a statically optimal binary 
search tree.



  

Static Optimality

● There is an O(n2)-time dynamic programming 
algorithm for constructing statically optimal 
binary search trees.
● Knuth, 1971

● There is an O(n log n)-time greedy algorithm 
for constructing binary search trees whose cost 
is within 1.5 of optimal.
● Mehlhorn, 1975

● These algorithms assume that the access 
probabilities are known in advance.



  

Challenge: Can we construct an optimal 
BST without knowing the access 

probabilities in advance?



  

The Intuition

● If we don't know the access probabilities 
in advance, we can't build a fixed BST 
and then “hope” it works correctly.

● Instead, we'll have to restructure the 
BST as operations are performed.

● For now, let's focus on lookups; we'll 
handle insertions and deletions later on.



  

Refresher: Tree Rotations
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An Initial Idea

● Begin with an arbitrary BST.
● After looking up an element, repeatedly 

rotate that element with its parent until it 
becomes the root.

● Intuition: 
● Recently-accessed elements will be up near 

the root of the tree, lowering access time.
● Unused elements stay low in the tree.



  

The Problem
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The Problem

● The “rotate to root” method might result 
in n accesses taking time Θ(n2).

● Why?
● Rotating an element x to the root 

significantly “helps” x, but “hurts” the 
rest of the tree.

● Most of the nodes on the access path to x 
have depth that increases or is 
unchanged.



  

A More Balanced Approach

● In 1983, Daniel Sleator and Robert 
Tarjan invented an operation called 
splaying.

● Rotates an element to the root of the 
tree, but does so in a way that's more 
“fair” to other nodes in the tree.

● There are three cases for splaying.



  

Case 1: Zig-Zig

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

First, rotate p with g
Then, rotate x with p

Continue moving x up the tree

First, rotate p with g
Then, rotate x with p

Continue moving x up the tree



  

Case 2: Zig-Zag
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Case 3: Zig
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Rotate x with r
x is now the root.

Rotate x with r
x is now the root.

(Assume r is the 
tree root)
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Splaying, Empirically

● Splaying nodes that are deep in the tree 
tends to correct the tree shape.

● Why is this?
● Is this a coincidence?



  

Why Splaying Works

● Claim: After doing a splay at x, the 
average depth of any nodes on the access 
path to x is halved.

● Intuitively, splaying x benefits nodes near 
x, not just x itself.

● This “altruism” will ensure that splays 
are efficient.
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The average depth of x, 
p, and g is unchanged.

The average depth of x, 
p, and g is unchanged.

These subtrees decrease 
in height by one or two.

These subtrees decrease 
in height by one or two.
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The average height of x, p, 
and g decreases by 1/3.

The average height of x, p, 
and g decreases by 1/3.

These subtrees have their 
height decreased by one.

These subtrees have their 
height decreased by one.
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There is no net 
change in the 

height of x or r.

There is no net 
change in the 

height of x or r.

The nodes in this subtree have 
their height decreased by one.

The nodes in this subtree have 
their height decreased by one.



  

An Intuition for Splaying

● Each rotation done only slightly 
penalizes each other part of the tree (say, 
adding +1 or +2 depth).

● Each splay rapidly cuts down the height 
of each node on the access path.

● Slow growth in height, combined with 
rapid drop in height, is a hallmark of 
amortized efficiency.



  

Making Things Easy

● Splay trees provide make it extremely 
easy to perform the following operations:
● lookup
● insert
● delete
● predecessor / successor
● join
● split

● Let's see why.



  

Lookups

● To do a lookup in a 
splay tree:
● Search for that 

item as usual.
● If it's found, splay 

it up to the root.
● Otherwise, splay 

the last-visited 
node to the root.



  

Insertions

● To insert a node 
into a splay tree:
● Insert the node as 

usual.
● Splay it up to the 

root.



  

Join

● To join two trees T₁ and T₂, where all 
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂



  

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂



  

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T₁

k

T₂



  

The Runtime

● Claim: All of these operations require 
amortized time O(log n).

● Rationale: Each has runtime bounded 
by the cost of O(1) splays, which takes 
total amortized time O(log n).

● Contrast this with red/black trees:
● No need to store any kind of balance 

information.
● Only three rules to memorize.
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