Splay Trees

Static Optimality

Balanced BSTs

- We've explored balanced BSTs this quarter because they guarantee worst-case $\mathrm{O}(\log n)$ operations.
- Claim: Depending on the access sequence, balanced BSTs may not be optimal BSTs.

Balanced BSTs

- We've explored balanced BSTs this quarter because they guarantee worst-case $\mathrm{O}(\log n)$ operations.
- Claim: Depending on the access sequence, balanced BSTs may not be optimal BSTs.

Static Optimality

- Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a set with access probabilities $p_{1}, p_{2}, \ldots, p_{n}$.
- Goal: Construct a binary search tree T^{*} that minimizes the total expected access time.
- T^{*} is called a statically optimal binary search tree.

Static Optimality

- There is an $\mathrm{O}\left(n^{2}\right)$-time dynamic programming algorithm for constructing statically optimal binary search trees.
- Knuth, 1971
- There is an $\mathrm{O}(n \log n)$-time greedy algorithm for constructing binary search trees whose cost is within 1.5 of optimal.
- Mehlhorn, 1975
- These algorithms assume that the access probabilities are known in advance.

Challenge: Can we construct an optimal BST without knowing the access probabilities in advance?

The Intuition

- If we don't know the access probabilities in advance, we can't build a fixed BST and then "hope" it works correctly.
- Instead, we'll have to restructure the BST as operations are performed.
- For now, let's focus on lookups; we'll handle insertions and deletions later on.

Refresher: Tree Rotations

An Initial Idea

- Begin with an arbitrary BST.
- After looking up an element, repeatedly rotate that element with its parent until it becomes the root.
- Intuition:
- Recently-accessed elements will be up near the root of the tree, lowering access time.
- Unused elements stay low in the tree.

The Problem

D

The Problem

- The "rotate to root" method might result in n accesses taking time $\Theta\left(n^{2}\right)$.
- Why?
- Rotating an element x to the root significantly "helps" x, but "hurts" the rest of the tree.
- Most of the nodes on the access path to x have depth that increases or is unchanged.

A More Balanced Approach

- In 1983, Daniel Sleator and Robert Tarjan invented an operation called splaying.
- Rotates an element to the root of the tree, but does so in a way that's more "fair" to other nodes in the tree.
- There are three cases for splaying.

Case 1: Zig-Zig

Case 2: Zig-Zag

First, rotate x with p
Then, rotate x with g
Continue moving x up the tree

Case 3: Zig

(Assume r is the tree root)

Splaying, Empirically

- Splaying nodes that are deep in the tree tends to correct the tree shape.
- Why is this?
- Is this a coincidence?

Why Splaying Works

- Claim: After doing a splay at x, the average depth of any nodes on the access path to x is halved.
- Intuitively, splaying x benefits nodes near x, not just x itself.
- This "altruism" will ensure that splays are efficient.

The average depth of x, p, and g is unchanged.

The average height of x, p, and g decreases by $1 /{ }_{3}$.

There is no net change in the height of x or r.

An Intuition for Splaying

- Each rotation done only slightly penalizes each other part of the tree (say, adding +1 or +2 depth).
- Each splay rapidly cuts down the height of each node on the access path.
- Slow growth in height, combined with rapid drop in height, is a hallmark of amortized efficiency.

Making Things Easy

- Splay trees provide make it extremely easy to perform the following operations:
- lookup
- insert
- delete
- predecessor / successor
- join
- split
- Let's see why.

Lookups

- To do a lookup in a splay tree:
- Search for that item as usual.
- If it's found, splay it up to the root.
- Otherwise, splay the last-visited node to the root.

Insertions

- To insert a node into a splay tree:
- Insert the node as usual.
- Splay it up to the root.

Join

- To join two trees T_{1} and T_{2}, where all keys in T_{1} are less than the keys in T_{2} :
- Splay the max element of T_{1} to the root.
- Make T_{2} a right child of T_{1}.

Split

- To split T at a key k :
- Splay the successor of k up to the root.
- Cut the link from the root to its left child.

Delete

- To delete a key k from the tree:
- Splay k to the root.
- Delete k.
- Join the two resulting subtrees.

The Runtime

- Claim: All of these operations require amortized time O(log n).
- Rationale: Each has runtime bounded by the cost of O(1) splays, which takes total amortized time $\mathrm{O}(\log n)$.
- Contrast this with red/black trees:
- No need to store any kind of balance information.
- Only three rules to memorize.

