
Functors or function objects are contained in a C++ class which
defines the operator (). Functors let you create objects that “look like”
functions because you can ‘invoke’ the () operator, making the object
behave like a function.

The advantage gained by functors is that they have state, i.e. their
ability to hold values from one call to another.

Consider the code to add two numbers:

struct MyAddFunctor {

 // Constructor

 MyAddFunctor(int inp){

 x = inp;

 }

 // Defining operator()

 int operator()(int y){

 return x+y;

 }

 int x;

};

int main(){

 MyAddFunctor func(5);

 int ret = func(10);

 //ret would be 15.

 int ret2 = func(25);

 // ret would br 30

}

func, declared an object of MyAddFunctor, is instantiated to hold the
value 5. Every ‘call’ of the functor, actually a call of the object’s ()
operator, updates func’s state.

We could have also combined instantiation and invocation in single
statement as MyAddFunctor(5)(10).

Why are they called as Function Objects?

The reason why functors are called function objects is because we can
call an object of struct (it could be class) MyAddFunctor as if it is a
function. Example : func(10).

Why are functors used?

One can argue that the work done by MyAddFunctor can simply be
done by writing C++ function as below:

int addFunction(int x){

 return 5+x;

}

But in addFunction we are hardcoding the value 5 and in the functor
we are not doing so. A MyAddFunctor instantiation is more
customizable.

