
erm 204

2-3-4 Trees and Red-
Black Trees

CS 402: Balanced Trees

erm 205

2-3-4Trees Revealed

• Nodes store 1, 2, or 3 keys and have
2, 3, or 4 children, respectively

• All leaves have thesame depth

b e h n r

a c d f g i l m p s x

1
2
--- N 1+()log height N 1+()log≤ ≤

k

b e h n r

erm 206

• Introduction of nodes with more than 1 key,
and more than 2 children

4-node:
• 3 keys, 4 links

2-3-4 Tree Nodes

2-node:
• same as a binary node

<a >a

3-node:
• 2 keys, 3 links >b<a

<a >c

>a
b
<c

a b c

>a
<b

a

 a b

CS 402: Balanced Trees

erm 207

• That means if d= N1/2, we get a height of 2

• However, searching out the correct child
on each level requires O(log N1/2) by
binarysearch

• 2 log N1/2 = O(log N) which is not as good
as we had hoped for!

• 2-3-4-trees willguarantee O(log N) height
using only 2, 3, or 4 children per node

Why 2-3-4?
• Why not minimize height by maximizing

children in a “d-tree”?
• Let each node have d children so that we

getO(logd N) search time! Right?

log
d N

 =
 log N

/log d

CS 402: Balanced Trees

erm 208

Insertion into 2-3-4 Trees

• Insert thenew key at thelowest internal
node reached in the search

• What about a4-node?
• We can’t insert another key!

dg d g

• 3-node becomes4-node

• 2-node becomes3-node

d g d f gf

CS 402: Balanced Trees

erm 209

• Now we can perform the
insertion using one of the
previous two cases

• Since we follow this
method from the root down
to the leaf, it is called
top down insertion

Top Down Insertion
• In our way down the tree, whenever we

reach a4-node, webreak it up into two2-
nodes, and move the middle element up
into the parent node

n

g

e

f n

d

g

d f g

f n
e

d e

CS 402: Balanced Trees

erm 210

Splitting the Tree

As we travel down the tree, if we encounter any
4-nodewe will break it up into2-nodes. This
guarantees that we will never have the problem
of inserting the middle element of a former 4-
node into its parent4-node.

a xf i l p r

a f i l p r

g

g

n

c t

x

c n t

Whoa, cowboy

CS 402: Balanced Trees

erm 211

a xf i l p r

a xf i l p r

c t

n

n

c t

g

g

CS 402: Balanced Trees

 Hold it

erm 212

a xp r

t

n

f l

a xp r

c i t

n

l

a xp r

c t

n

g

f i l

c ig

f g

CS 402: Balanced Trees

 Hold it

erm 213

Time Complexity of Insertion
in 2-3-4 Trees

Time complexity:
• A search visits O(log N) nodes

• An insertion requires O(log N) node splits

• Each node split takes constant time

• Hence, operationsSearch andInsert each
take timeO(log N)

Notes:
• Instead of doing splits top-down, we can

perform them bottom-up starting at the in-
sertion node, and only when needed. This
is calledbottom-up insertion.

• A deletion can be performed byfusing
nodes (inverse of splitting), and takes
O(log N) time

CS 402: Balanced Trees

