Dijkstra's Shortest Path Example

Example 1: Vertex v₁

Cost of v_1 is 0.

 $S \leftarrow v_1$

There is a path to all neighbors. Each will be updated.

 V_1 is marked.

Pick vertex not in S with lowest cost (v_4) and update neighbors.

Only path is to v_2 .

Min $(4,2+1) = 3 - Change v_2 cost$

Again, pick vertex not in S with lowest cost (v_2) and update neighbors.

Only path is to v_3 .

 $Min (8,3+2) = 5 - Change v_3 cost$

Path v_0 to v_3 : (v_1 , v_4 , v_2 , v_3)

Dijkstra's Shortest Path Example

Again, pick vertex not in S with lowest cost and update neighbors. v_3 is only choice

 V_3 has a path only to v_4 . Cost to v4 from v_0 is Min(2,5+3). Do not update v4 cost.

Final graph, with costs

Exercises: Repeat for vertices v_2 , v_3 , and v_4 .

- Note that v₁ is not accessible from other vertices.
- 2. Find the transitive closure of this graph.

