Dijkstra's Shortest Path Example

Example 1: Vertex v_{1}

Pick vertex not in S with lowest cost $\left(\mathrm{v}_{4}\right)$ and update neighbors.

Only path is to v_{2}.
Min (4,2+1) = 3 - Change v_{2} cost

Again, pick vertex not in S with lowest cost (v_{2}) and update neighbors.

Only path is to v_{3}.
Min $(8,3+2)=5-$ Change v_{3} cost

Dijkstra's Shortest Path Example

Again, pick vertex not in S with lowest cost and update neighbors. v_{3} is only choice V_{3} has a path only to v_{4}. Cost to v 4 from v_{0} is $\operatorname{Min}(2,5+3)$. Do not update v4 cost.

Final graph, with costs

Exercises: Repeat for vertices $\mathrm{v}_{2}, \mathrm{v}_{3}$, and v_{4}.

1. Note that v_{1} is not accessible from other vertices.
2. Find the transitive closure of this
 graph.
