
Project 3                    CIS 310                       Kutztown 
Points:  40   
 (+10 HW Points for left recursion worksheet; graded separately) 
Due: TBD. No late submissions accepted. 
Purpose: Scan and Parse of a program, written in Ada 
 
Assignment: In this assignment, you will write code to process the output 

from Project 2, producing a program that performs a rudimentary 
scan and parse of a program, checking its adherence to the syntax 
rules set out in the Mini-Grammar after All Kleene stars are 
removed without application of left recursion..  

 

Your program will obtain the name of and input a test program, from the command line if 
present, otherwise interactively, scan it using Project 2, which you will update to become 
procedure lex, and parse it, using the recursive descent method. The 
parser will analyze the lexemes produced by the scanner. See notes 
regarding storing the lexemes.  
 
The screen output of the parse will be a series of messages indicating 
any errors found, and a final message indicating the result: success, or a 
final error message, indicating that the parser encountered one or more 
syntax errors. The number of errors found will also be displayed. 
 
For example, the test file in the box should first produce an error message along the lines 
of: 
 
Error: Expected Variable Name 
 
We need to see why that is. But first, recursive descent must be explained. To implement 
it, simply write a function for each non-terminal. For example, the <dec part> rule is now: 
 
<dec part> ---> <list var> : <type> | <list var> : <type> ; <dec part> 

 
Thus, the function for <dec part> would work as in the 
box: 
 
Now, back to the error. The problem is the semicolon 
before the begin. According to the rule for the 
declaration part of a program, a declaration is either 
<list var> : <type> or <list var> : <type> followed by a 
semicolon and another    <dec part>. When the parser saw the semicolon, it would 
recursively call the dec_part function (at this point it is executing inside the dec_part 
function) to absorb another <list var> : <type> .It calls the list_var function, which (checking 
its rule) expects an identifier and instead encountered a begin symbol, which causes it to 
output the error. 
 

Notes: 

 Convert your second project into a package named lex that has Project 2’s main() as 
its scanning function..  

 The output from the lex subprogram will not be accessed from a file by the parser. You 
must use an object within another package to hold this info and make it available to 
the parser after lex fills it.  

program abc 

dec 

  i1,i2:int; 

  x,y:real; 

begin 

  y=i2*x+2; 

end. 

1. call function for <list var> 

2. accept colon (:) 

3. call function for <type> 

4. if next item is semicolon 
A. call <dec part> 

 



Project 3                    CIS 310                       Kutztown 
 Your program will handle several command line switches, that follow the required 

command line argument. They must be recognized case insensitively. 
o /L output lexemes to the file whose name follows the /L (separated by a blank). 
o /S output the symbol table to the file whose name follows the /S (separated by a 

blank). 
o /E echo the file as it is processed. 
The switches follow the required single command line argument, the input file name, 
and can be in any order. 

 All errors are printed with line number of occurrence. 

 Your symbol table will record the line number of each identifier. If an identifier is 
declared twice, give the line on which it first occurred when reporting the error, and 
don’t record the 2nd occurrence. 

 The errors you are required to report via a symbol table lookup upon encountering an 
identifier are (discovered above the begin) identifier declared twice, (discovered below 
the begin) identifier not declared, and wrong number of argument(s) to Read() or 
Write(). Also report the line numbers of BAD lexemes. 

 If an error is found, try to act accordingly. For example, if it is a bad identifier in a dec 
section, see if a comma or right parent follows; regardless, try to recover seamlessly. 

 You must have separate packages containing objects for the symbol table and for the 
list of lexemes, as well as the package for the scanner that was Project 2. The symbol 
table and holder of lexemes are like C++ classes; they are typedefs that should have 
associated functions. 

 Your program will stop when it encounters the end. token. This must be true of any 
input file, whether or not it has anything after end. , even if it is the wrong format (e.g. 
DOS or Unix/Linux)  

 Create a robust RoboDoc web area and provide the link in your readme file, to be 
named readme.txt, turned in on acad and submitted to the Project 3 Artifacts dropbox 
on D2L. Also, submit in the dropbox: 

o Describe: 
▪ Your parser’s design, including major implementation decisions.  
▪ Your symbol table’s construction and use.  
▪ For the non-terminals in the grammar numbered 1, 2, 3, 6, 11, and 12, 

provide an artifact describing how it was processed, via a flowchart 
(preferred) or in some other clear manner. 

o A bug report, if applicable. If your program has bugs not noted therein, the 
penalties will be heftier. 

o A clear statement describing how to build and run the program 

 Submit at least two input files via turnin that were error-free, and two that had errors. 

 Obvious negligence regarding testing will be severely penalized. 

 A forum has been created for discussion of issues in development of Project 3. You 
must register for the forum; participation will be factored into the homework part of 
your grade, as well as borderline grading decisions. Further information will be 
provided under separate cover. 

 
Deliverables: 

• Worksheet – Due: 12 Noon Sat. April 4 in the Left Recursion dropbox. 

• Project – Due: 10 AM Fri. April 24. 
o Turnin: Your parser, named parse.adb (all lower case). There will be a 3-point 

penalty for non-compliance. You will have at least six other files for the required 
packages, lex, lexemes, and the symbol table. Submit the input files used to test 
your program as well. Submit a textual readme.txt. DO NOT submit files 
produced by gnatmake, including executables. 

o D2L Project 3 Artifacts Dropbox: Full readme, design artifacts  


