
Intro to Languages and Grammars CIS 310 Procedural Programming Languages
page 1 of 4

Languages and Grammars (informally)

Suppose we have the following "grammar" to generate sentences in English.

The set of English words we are allowed to used is the set {a, the, large, hungry, rabbit, mathematician,
eats, hops, quickly, wildly}. Our sentences must satisfy the following rules.

1. A sentence (S) is made up of a noun phrase (NP) followed by a verb phrase (VP);

2. a noun phrase is made up of an article (ART) followed by an adjective (ADJ) followed by a noun
(N), or

3. a noun phrase is made up of an article followed by a noun ;

4. a verb phrase is made up of a verb (V) followed by and adverb (ADV), or

5. a verb phrase is made up of a verb (V);

6. an article is a, or

7. an article is the;

8. an adjective is large or

9. an adjective is hungry;

10. a noun is rabbit, or

11. a noun is mathematician;

12. a verb is eats, or

13. a verb is hops; and

14. an adverb is quickly, or

15. an adverb is wildly.

From these rules we can form valid sentences using a series of replacements until no more rules can be
used. For example, we can form the sentence a large mathematician hops wildly. However, we cannot
generate the sentence the mathematician eats a rabbit.

Intro to Languages and Grammars CIS 310 Procedural Programming Languages
page 2 of 4

Languages and Grammars (formally)

A vocabulary V is any nonempty finite set of elements called symbols.
A string (word, sentence, statement) over alphabet V is a finite sequence of symbols from V .

V * is the set of all strings over V .

λ (or) is the empty or null string. λ ε V *.

V + is the set V * − {λ }.

A language over V is a subset of V *.

Informally a grammar provides a set of symbols and a set of productions or rules for generating the
strings in a language. See our author's description of a grammar.
More formally, a grammar G is a 4-tuple (N , T , S , P) where:

1) N is a finite, nonempty set of symbols called nonterminals; N V N T =

2) T is a finite, nonempty set of symbols called terminals; T V N T =

V

3) S ε N is a symbol called the start symbol; and

4) P is a finite, nonempty set of productions or rules of the form u v where u ε (N T)+
and v ε (N T)*. We say u can be defined (or replaced) by v.

For any strings w0 = l z 0 r and w1 = l z 1 r ε V *, we write w0 w1 if z0 z1 is a production in P. We say

w1 is directly derivable from w0 (or derivable from w0 in one step).

If wn can be derived from w0 in zero or more steps we write w0
*

 wn, we say wn is derivable from w0 .

We say the grammar G generates the language L(G) provided L(G) = {w ε T * : S * w} .

Observe that the symbols (including the symbols in N and in T , and the symbols used to represent the
rules, etc.) also make up an alphabet and the rules are strings over that alphabet. Thus the set of rules of
the grammar is a metalanguage , i.e., a language used to describe another language.

For the time being we shall be concerned with rules of the form A β where A ε N and β ε V *. Such

grammars are called context-free grammars and the languages they generate are called context-free
languages.

Example: T = {a}, N = {S}, L(G) = {an : n > 0}

P = { S a, S aS }

Intro to Languages and Grammars CIS 310 Procedural Programming Languages
page 3 of 4

Example: T = {a, b}, N = {S, B}, L(G) = {ar bs : r, s _ 0}

P = { S aS, S bB, S b, B bB, B b, S λ }

Languages and Grammars (cont'd)

Example T= {a, b}, N = {S}, L(G) = {an bn : n > 0}
P = { S ab, S aSb }

Example T = {a, b, c}, N = {S}, L(G) = ?
P = { S aSa, S bSb, S cSc , S λ}

Example T= {a, b}, N = {S, A, B}, L(G) = ?
P = { S aAB, A bBb, B A, B λ }

A derivation is a leftmost derivation if in each step the leftmost nonterminal is replaced.

Similarly a derivation is a rightmost derivation if in each step the rightmost nonterminal is replaced.

Parsing is the process of finding a sequence of rules by which a string u in L(G) is derived.

Informally, a derivation of a string can be represented by a hierarchical structure called a parse tree. A
parse tree is an ordered tree in which each interior node is labeled with the left hand side of a rule and the
children of the node represent the corresponding right hand side of the rule. In a context-free language
every interior node is labeled with a nonterminal symbol and every leaf is labeled with a terminal symbol.

A grammar for which two (or more) distinct parse trees are possible for the same string is said to be
ambiguous. The last example is an example of an ambiguous grammar.
(right) regular grammars are grammars with rules of the form A vB, or A v, where v ε T * , A,B ε N.

Observe that regular grammars are also context-free.
Example: T = {a}, N = {S}, L(G) = {an : n > 0}

P = { S a, S aS }

Example: T = {a, b}, N = {S, B}, L(G) = {ar bs : r, s _ 0}

P = { S aS, S bB, S b, B bB, B b, S λ }

In order that we understand the restrictions placed on context-free grammars it may be helpful to look at

a context-sensitive grammar. A context-sensitive grammar rule is of the form αAβ αγβ, where

α, β, γ ε (NT)*, A ε N

Example T = {a, b, c}, N = {S, A, B, C}, L(G) = ?
P = { S A, A aABC, A abC , CB BC, bB bb, C c}

Intro to Languages and Grammars CIS 310 Procedural Programming Languages
page 4 of 4

Backus-Naur Form

The syntax of a language is the form of its statements. In particular, the syntax of a programming language is the
form of its expressions, statements, and program units.

The semantics of a language is the meaning of those statements. In particular, the semantics of a programming
language is the meaning of its expressions, statements, and program units.

The smallest syntactic units in a language are called lexemes (or lexics). In particular, the lexemes of a program-
ming language are the instances of its identifiers, constants, operators, keywords, reserved words, etc.

A token of a language is a category of its lexemes. In particular, identifiers and arithmetic operators of a program-
ming language are tokens of the programming language.

A language recognizer is a device which given a string of symbols from an alphabet either accepts or rejects that
string as a member of a language. In particular, the syntax analyzer of a compiler determines whether or not a pro-
gram is in the programming language, i.e., the program is syntactically correct.

A language generator is a device which can generate the sentences in a language. A grammar is a language gener-
ator for a language.

The use of a formal grammar to define the syntax of a programming language is important to the user as well as the
implementor. The user uses the grammar for correct use of program form, punctuation, and structure. The imple-
mentor uses the grammar in construction of the translator. Both the user and implementor have a common defini-
tion from which to resolve disputes.

The language generating the instances of the tokens of programming languages is in the class of regular languages.
The programming languages themselves are for the most part context-free languages. The notation used to
describe the syntax of programming languages is known as the Backus-Naur form (BNF). BNF is a metalan-
guage used to describe a programming language.

In Backus-Naur form the nonterminals are the names of abstractions and are often delimited by brackets, < > . For
example <var>, <expr>, and <id> may be delimited nonterminals in a BNF description of a programming lan-
guage. The start symbol may be <program> in a BNF description of a programming language, The terminals are
the lexemes of the language. The symbol ::= is often used instead of the arrow in a production . All right-hand
sides of productions with the same left-hand side are listed in the same statement separated by the "or" symbol, |.
For example, the productions S aSa, S bSb, and S λ are represented as:

<S> ::= a <S>a | b<S>b | λ

or in our author's format: S aSa | bSb | λ.

A grammar for generating arithmetic expressions (see page 36):
expression expression operator expression

| − expression

| (expression)
| identifier

identifier A | B | C
operator + | − | ∗ | /

Note that this grammar is an ambiguous grammar.

Intro to Languages and Grammars CIS 310 Procedural Programming Languages

page 5 of 4

	Languages and Grammars (informally)
	Suppose we have the following "grammar" to generate sentences in English.
	The set of English words we are allowed to used is the set {a, the, large, hungry, rabbit, mathem...
	1. A sentence (S) is made up of a noun phrase (NP) followed by a verb phrase (VP);
	2. a noun phrase is made up of an article (ART) followed by an adjective (ADJ) followed by a noun...
	3. a noun phrase is made up of an article followed by a noun ;
	4. a verb phrase is made up of a verb (V) followed by and adverb (ADV), or
	5. a verb phrase is made up of a verb (V);
	6. an article is a, or
	7. an article is the;
	8. an adjective is large or
	9. an adjective is hungry;
	10. a noun is rabbit, or
	11. a noun is mathematician;
	12. a verb is eats, or
	13. a verb is hops; and
	14. an adverb is quickly, or
	15. an adverb is wildly.
	From these rules we can form valid sentences using a series of replacements until no more rules c...
	Languages and Grammars (formally)
	A vocabulary V is any nonempty finite set of elements called symbols.
	A string (word, sentence, statement) over alphabet V is a finite sequence of symbols from V .
	V * is the set of all strings over V .
	l (or) is the empty or null string. l e V *.
	V + is the set V * - {l }.
	A language over V is a subset of V *.
	Informally a grammar provides a set of symbols and a set of productions or rules for generating t...
	More formally, a grammar G is a 4-tuple (N , T , S , P) where:
	1) N is a finite, nonempty set of symbols called nonterminals; N V N T =
	2) T is a finite, nonempty set of symbols called terminals; T V N T = V
	3) S e N is a symbol called the start symbol; and
	4) P is a finite, nonempty set of productions or rules of the form u v where u e (N T)+ and v e (...
	For any strings w0 = lz0r and w1 = lz1r e V *, we write w0 w1 if z0 z1 is a production in P. We s...
	If wn can be derived from w0 in zero or more steps we write w0 * wn, we say wn is derivable from ...
	We say the grammar G generates the language L(G) provided L(G) = {w e T * : S * w} .
	Observe that the symbols (including the symbols in N and in T , and the symbols used to represent...
	For the time being we shall be concerned with rules of the form A b where A e N and b e V *. Such...
	Example: T = {a}, N = {S}, L(G) = {an : n > 0}
	P = { S a, S aS }
	Example: T = {a, b}, N = {S, B}, L(G) = {ar bs : r, s _ 0}
	P = { S aS, S bB, S b, B bB, B b, S l }
	Languages and Grammars (cont'd)
	Example T= {a, b}, N = {S}, L(G) = {an bn : n > 0}
	P = { S ab, S aSb }
	Example T = {a, b, c}, N = {S}, L(G) = ?
	P = { S aSa, S bSb, S cSc , S l}
	Example T= {a, b}, N = {S, A, B}, L(G) = ?
	P = { S aAB, A bBb, B A, B l }
	A derivation is a leftmost derivation if in each step the leftmost nonterminal is replaced.
	Similarly a derivation is a rightmost derivation if in each step the rightmost nonterminal is rep...
	Parsing is the process of finding a sequence of rules by which a string u in L(G) is derived.
	Informally, a derivation of a string can be represented by a hierarchical structure called a pars...
	A grammar for which two (or more) distinct parse trees are possible for the same string is said t...
	ambiguous. The last example is an example of an ambiguous grammar.
	(right) regular grammars are grammars with rules of the form A vB, or A v, where v e T * , A,B e ...
	Example: T = {a}, N = {S}, L(G) = {an : n > 0}
	P = { S a, S aS }
	Example: T = {a, b}, N = {S, B}, L(G) = {ar bs : r, s _ 0}
	P = { S aS, S bB, S b, B bB, B b, S l }
	In order that we understand the restrictions placed on context-free grammars it may be helpful to...
	a, b, g e (NT)*, A e N
	Example T = {a, b, c}, N = {S, A, B, C}, L(G) = ?
	P = { S A, A aABC, A abC , CB BC, bB bb, C c}
	Backus-Naur Form
	The syntax of a language is the form of its statements. In particular, the syntax of a programmin...
	The semantics of a language is the meaning of those statements. In particular, the semantics of a...
	The smallest syntactic units in a language are called lexemes (or lexics). In particular, the lex...
	A token of a language is a category of its lexemes. In particular, identifiers and arithmetic ope...
	A language recognizer is a device which given a string of symbols from an alphabet either accepts...
	A language generator is a device which can generate the sentences in a language. A grammar is a l...
	The use of a formal grammar to define the syntax of a programming language is important to the us...
	The language generating the instances of the tokens of programming languages is in the class of r...
	In Backus-Naur form the nonterminals are the names of abstractions and are often delimited by bra...
	<S> ::= a <S>a | b<S>b | l
	or in our author's format: S aSa | bSb | l.
	A grammar for generating arithmetic expressions (see page 36):
	expression expression operator expression
	| - expression
	| (expression)
	| identifier
	identifier A | B | C
	operator + | - | * | /
	Note that this grammar is an ambiguous grammar.

