
PROGRAMMING PROJECT 2 CSC 235

// File: cd.cpp

// Build consecutive digit integer

#include <iostream>

using namespace std;

int main()

{int start,digits;

 cout << "Give the first digit >";

 cin >> start;

 // Error check

 if (start < 0 || start > 9) {

 cout << “Error: Bad Starting digit\n”

 return(-1);

 }

 cout << "How many digits in the number? >";

 cin >> digits;

 // Build the number

 int number=start++;

 for (int i=1;i<digits;i++) {

 // append the new digit

 number=(number*10)+start;

 start=(start+1)%10;

 }

 cout << "The number, with " << digits <<

" digits, starting from " << start <<

 " is " << number << endl;

}

Initial

Digit

#Digits Number

4 5 45678

7 3 789

8 6 890123

Topic: Intro to programming with X86_64 assembler
Points: 25
Due: TBA, using the turnin script. Submit late at your own risk.
Overview: In this project, you will write a simple assembly language program

Sometimes it seems that mathematicians have waaayyy too much time on their hands. Incredible
volumes of properties have been identified for numbers, some simple to understand, like a prime
number, and some a bit more difficult. Some seem important, and others leave the impression that
someone needs a life.

For your first project, you will write a program in
X86_64 assembler to build an integer with
consecutive digits. A C++ version of this program
is in the box, and also in the public area for this
project on acad as well as on the web and maybe
in D2L.

Your program will prompt the user for an initial
digit and a number of digits. It then builds an
integer meeting those specifications. Some
examples are
shown in the
table.

You will need
to write a loop
to iterate
#digits times, and conditionals to error check that
the value of start is one digit.

Your assembler program will not follow the C++
code, as you will use branches for the conditionals
and loop. In particular, the conditional can’t be
done with one branch. Check for too big, and if not, check for too small. If not, continue, but if either too
big or too small, branch to the end.

Notes:
▪ The modulus, or remainder operation is handled by calling divq or idivq and accessing the

remainder in %rdx.

▪ You must use id blocks and comments. Indent consistently. Preferred indentation is shown in the
box. Note the lining up of the instruction (which is also indented), and then the first operand. Only
labels may appear against the left margin. Write a program that you would be proud to see posted in
the hallway.

Turnin:
Your assembler program,
named p2.m . You may turn
in a file named readme.txt (all lower case) to describe design decisions, known bugs, limitations, etc;

Sum: mov 10,%l4 !put const 10 into register for comparison

 cmp %l5,%l4 !compare register values

 bne loop !if reg values were unequal (ctr!=10), iterate

 nop !delay slot

