
CSc 136 Project 2 Drawings

Drawing 1: Show the progression of one sort as it sorts and processes duplicates

WordRec Input File

Data: WordRec wordlist[5];

First, read until capacity

wordList numWords: 5

0 1 2 3 4

Whale Pony Cat Cat Bear

1 1 1 1 1

Sort: spot: 0 idxMin: 4

Swap Whale with Bear

wordList numWords: 5

Whale Pony Cat Cat Bear

1 1 1 1 1

Bear is settled. spot: 1 idxMin: 2

Swap first Cat and Pony (Cat goes next)

wordList numWords: 5

0 1 2 3 4

Bear Cat Pony Cat Whale

1 1 1 1 1

Cat in index 3 is next. But, it is a duplicate spot: 2 idxMin: 3

This is determined by wordlist[idxMin]==wordlist[spot-1]. This must be checked before checking

 wordList[idxMin] against wordList[spot].

Swap the duplicate with the last in-use element (Whale in index numWords-1), then decrement numWords. Finally,

increment the duplicate word’s counter.

wordList numWords: 5 4

0 1 2 3 4

Bear Cat Pony Cat Whale Whale Cat

1 1 2 1 1 1

 In Use Not In Use spot: 2 idxMin: 2

wordList[idxMin]!=wordList[spot-1], so no duplicate. idxMin==spot, so no swap. Pony stays.

wordList numWords: 4

Bear Cat Pony Whale Cat

1 2 1 1 1

 In Use Not In Use

Spot becomes 3, which is items -1. The loop is done. At this point, all but the last element has been

processed, which means the list is ordered. Check for last element duplicate finds none. This sort is done.

What would be the final result after processing this entire data file?

token

count

Whale Pony Cat

Cat

Bear Dog

Pony Llama Pony

Bear Bear Bear Bear Whale

Remains

CSc 136 Project 2 Drawings

This Example Demonstrates a Special Case of the Duplicate at the End

WordRec Input File

Data: WordRec wordlist[5];

First, read until capacity

wordList numWords: 5

0 1 2 3 4

Whale Pony Cat Bear Pony

1 1 1 1 1

Sort: spot: 0 idxMin: 3

Swap Whale with Bear

wordList numWords: 5

Whale Pony Cat Bear Pony

1 1 1 1 1

Bear is settled. spot: 1 idxMin: 2

Swap Cat and Pony (Cat goes next)

wordList numWords: 5

0 1 2 3 4

Bear Cat Pony Whale Pony

1 1 1 1 1

No swap. Pony (1
st
 one) is in place spot: 2 idxMin: 2

wordList numWords: 5

0 1 2 3 4

Bear Cat Pony Whale Pony

1 1 1 1 1

 spot: 3 idxMin: 4

Next item is Pony. But wordlist[idxMin] == wordlist[spot-1] we have a duplicate

Rather than swap, we increment list[spot-1]’s count, keep spot at 3,increment list[spot-1].count,

 and decrement numWords

wordList numWords: 4

0 1 2 3 4

Bear Cat Pony Whale Pony

1 1 2 1 1

 In Use Not In Use

Spot is now 3, which is equal to items -1. The loop is done. At this point, all but the last element has been

processed, which means the list is ordered.

You must add in a check if the last item is a duplicate (see next example).

token

count

Whale Pony Cat

Bear

Pony Dog

Pony Llama Pony

Bear Bear Bear Bear Whale

CSc 136 Project 2 Drawings

This Example Demonstrates Another Special Case
WordRec Input File – Updated

Data: WordRec wordlist[5];

First, read until capacity

wordList numWords: 5

0 1 2 3 4

Horse Pony Cat Pony Bear

1 1 1 1 1

Sort:

Swap Horse with Bear

wordList numWords: 5

Horse Pony Cat Pony Bear

1 1 1 1 1

Bear is settled.

Swap Cat and Pony (Cat goes next)

wordList numWords: 5

0 1 2 3 4

Bear Cat Pony Pony Horse

1 1 1 1 1

Swap Horse and Pony

wordList numWords: 5

0 1 2 3 4

Bear Cat Horse Pony Pony

1 1 1 1 1

No swap. Pony (1
st
 one) is in place

wordList numWords: 5

0 1 2 3 4

Bear Cat Horse Pony Pony

1 1 1 1 1

At this point, the list is definitely ordered. You must add in a check if the last item is a duplicate.

Pony is a duplicate (it is the same as the item before it). Increment Pony’s count & decrement numWords

wordList numWords: 4

0 1 2 3 4

Bear Cat Horse Pony Pony

1 1 1 2 1

 In Use Not In Use

token

count

Horse Pony Cat

Pony

Bear Dog

Pony Llama

Bear Bear Bear Bear Horse

CSc 136 Project 2 Drawings

Drawing 2: Show the Progression of Processing an Entire Data File
Read first five words

wordList numWords: 5

0 1 2 3 4

Horse Pony Bear Pony Bear

1 1 1 1 1

1
st
 Sort: Note that the two duplicates were found at index numWords-1; must check for that

wordList numWords: 3

0 1 2 3 4

Bear Horse Pony Pony Bear

2 1 2 1 1

 In Use Not In Use

Read until capacity. Pony goes in index 3.Dog goes in index 4. They overwrote the previous contents;

Note: Pony overwrote Pony! numWords is back to CAPACITY

wordList numWords: 5

0 1 2 3 4

Bear Horse Pony Pony Dog

2 1 2 1 1

Next sort/process duplicates. Only pony is a duplicate.

wordList numWords: 4

0 1 2 3 4

Bear Dog Horse Pony Pony

2 1 1 3 1

Again, read until capacity. Cat got read.

wordList numWords: 5

0 1 2 3 4

Bear Dog Horse Pony Cat

2 1 1 3 1

Sort. No duplicates. numWords==CAPACITY after sort means no new words will be added.

wordList numWords: 5

0 1 2 3 4

Bear Cat Dog Horse Pony

2 1 1 1 3

Rest of file is read. Only duplicate of word already in array is Horse. Llama and Giraffe can’t be added.

wordList numWords: 5

0 1 2 3 4

Bear Cat Dog Horse Pony

2 1 1 2 3

Horse Pony Bear

Pony

Bear Pony

Dog Cat Llama

Giraffe Horse Llama

CSc 136 Project 2 Drawings

One more: What if the array doesn’t end up full? What if the file ends first?
Read first five words

wordList numWords: 5

0 1 2 3 4

Horse Pony Bear Pony Bear

1 1 1 1 1

1
st
 Sort: Duplicates handled

wordList numWords: 3

0 1 2 3 4

Bear Horse Pony Pony Bear

2 1 2 1 1

 In Use Not In Use

Read next two words

wordList numWords: 5

0 1 2 3 4

Bear Horse Pony Horse Pony

2 1 2 1 1

 In Use

Both values read are duplicates. Why do Horse and Pony change places in the unused section?

wordList numWords: 3

0 1 2 3 4

Bear Horse Pony Pony Horse

2 2 3 1 1

 In Use Not In Use

Read in final word, Bear

wordList numWords: 4

0 1 2 3 4

Bear Horse Pony Bear Horse

2 2 3 1 1

 In Use Not In Use

File is done. Since file ended first, instead of processing remaining words in file, run sort/process one last

time.

Bear is found when you check after the normal sort, for a duplicate with the last element. Decrement

numWords and increment Bear’s counter.

wordList numWords: 3

0 1 2 3 4

Bear Horse Pony Bear Horse

3 2 3 1 1

 In Use Not In Use

Horse Pony Bear

Pony

Bear

Horse Pony Bear

