
18

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

CHAPTER 5. Relational Database Management Systems and SQL

5.1 Brief History of SQL in Relational Database Systems

- The relational model was first proposed by E.F. Codd in 1970.

- A language now called SQL, originally spelled SEQUEL, was presented in a series of papers
 starting in 1974.

- An early commercial relational database management system, ORACLE, was developed in the
 late 1970s using SQL as its language.

- IBM’s first commercially available relational database management system, SQL/DS was

announced in 1981.

- IBM’s DB2, also using SQL as its language, was released in 1983.

- Both American National Standards Institute (ANSI) and the International Standards

Organization (ISO) adopted SQL as a standard language for relational databases and
published specifications for the SQL language, which is usually called SQL1 in 1986.

- A major revision, SQL2, was adopted by both ANSI and ISO in 1992.

- The current SQL3 standard was developed over the time, with major parts published in 1999,
 2003, 2006, and 2008.

- This chapter will focus on the most widely used strictly relational features that are
 available in most relational DBMSs.

- Different implementations of SQL vary slightly from the syntax presented here, but the
basic notions are the same. Commands given in this chapter generally use the Oracle
syntax, and may need slight modifications to run on other DBMSs.

5.2 Architecture of a Relational Database Management System

- Relational database management systems support the standard three-level architecture for
 database. (see Figure 5.1 on p155 of the textbook)

- The logical level for relational database consists of base tables that are physically stored.
 These tables are created using a CREATE TABLE command.

19

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

- A base table can have any number of indexes either created by the system itself or created
 using the CREATE INDEX command. An index is used to speed up retrieval of records

based on the value in one or more columns. Most relational database management systems
use B trees or B+ trees for indexes.

- On the physical level, the base tables and their indexes are represented in files. The
 physical representation of the tables may not correspond exactly to our notion of a base table
 as a two-dimensional object. The DBMS, not the OS, controls the internal structure of both
 the data files and the indexes.

- The user is generally unaware of what indexes exist, and has no control over which index
 Will be used in locating a record.

- Once the base tables have been created, “views” for users can be created using the
CREATE VIEW command. Relational views can be either “windows” into base tables or
“virtual tables”, not permanently stored, but created when the user needs to access them.
Users are unaware of the fact that their views are not physically stored in table form.

- One of the most useful features of a relational database is that it permits dynamic database
definitions: can create new tables, add columns to old ones, create new indexes, define views,
and drop any of these objects at any time.

5.3 Defining the Database: SQL DDL

5.3.2 CREATE TABLE

- (Form)
 CREATE TABLE [schema-name.] base-table-name (colname datatype [column constraints]
 [, colname datatype [column constraints]]
 • • •
 [table constaraints]
 [storage specifications]);

- Examples

 (ex) CREATE TABLE Customer (cno CHAR(3), balance NUMBER(5));

 CREATE TABLE Employee (

20

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 SSN CHAR(9) NOT NULL,
 NAME VARCHAR2(30) NOT NULL,
 AGE INT,
 PRIMARY KEY(SSN)
);

 CREATE TABLE Works_On (

 ESSN CHAR(9) NOT NULL,
 PNO INT NOT NULL,
 HOURS DECIMAL(3,1) NOT NULL,

 PRIMARY KEY(ESSN, PNO),
 FOREIGN KEY(ESSN) REFERENCES EMPLOYEE(SSN),
 FOREIGN KEY(PNO) REFERENCES PROJECT(PNUMBER)

);

 (ex) Figure 5.2 on p159 of the textbook for the following schema:

Student (stuId, lastName, firstName, major, credits)
 Faculty (facId, name, department, rank)
 Class (classNumber, facId, schedule, room)
 Enroll (classNumber, stuId, grad)

- base-table name is a user-supplied name (an identifier) for the table. No SQL key words

may be used, and the table name must be unique within the database.

- For each column, specify a name that is unique within the table, and a data type.

- In Oracle, identifiers must be at most 30 characters long, begin with an alphabetic
character, and contain only alphanumeric characters (but _, $, and # are permitted).

- Either uppercase or lowercase letters may be used, but Oracle will always display them as
 uppercase.

- The maximum number of columns for an Oracle table is 1000.

- Each line ends with a comma, except the last, which ends with a semicolon.

21

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

- If the optional storage specification is not specified, the database management system will
create a default space for the table.

- The available data types vary from DBMS to DBMS.

- VARCHAR2 (n) stores varying length strings of maximum size n bytes. A size n up to 4000
 bytes must be specified.

- CHAR (n) can be used for fixed-length strings with the maximum allowable size of 2000
 bytes.

- For fixed-point numbers the data type NUMBER (p, s) is used. p is the total number of digits

and s is the number of digit to the right of the decimal point, if any. For integers, the s is
omitted. Floating-Point numbers can also specified as NUMBER, with no precision (p) or scale
(s) specified, or as FLOAT (p).

- Values of DATE type are entered using the default format ‘dd-mon-yy’ as in ’02-DEC-11’,

where the month is represented using a three-letter abbreviation.

- The database management system has facilities to enforce data correctness. The relational
 model uses integrity constraints to protect the correctness of the database, allowing only
legal instances to be created.

- In a CREATE TABLE command, optional constraints can and should be added, both at the
column level (a.k.a. in-line constraints) and at the table level (a.k.a. out-of-line
constraints).

- The column (or in-line) constraints include options to specify NULL/NOT NULL, UNIQUE,
 PRIMARY KEY, FOREIGN KEY, REF, CHECK, and DEFAULT for any column, immediately
 after the specification of the column name and data type.

- If the primary key is not composite, it is also possible to specify PRIMARY KEY as a column

constraint, simply by adding the words PRIMARY KEY after the data type for column.
(ex) stuId VARCHAR2 (6) PRIMARY KEY,

- The specification of PRIMARY KEY in SQL carries an implicit NOT NULL constraint as well
as a UNIQUE constraint. It is also desirable to specify NOT NULL and/or UNIQUE for
candidate keys.

- The CHECK constraint can be used to specify a condition that the rows of the table are not

22

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 permitted to violate, in order to verify that values provided for attributes are appropriate.

- We can also specify a default value for a column if we wish to do so.

- We can optionally provide a name for any constraint. If we do not, the system will
 automatically assign a name. However, a user-defined name is preferable, since it gives us an
 opportunity to choose a meaningful name, which is useful if we wish to modify it later.

 (ex) credits NUMBER(3) DEFAULT 0 CONSTRAINT Student_credits_cc CHECK
 ((credits >= 0) AND (credits < 150));

- Table constraints appear after all the columns have been declared, and can include the
 specification of a primary key, foreign key, uniqueness, references, checks, and general
 constraints that can be expressed as conditions to be checked, but not NOT NULL, which is
always a column constraint.

- If the primary key is a composite, it must be identified using a table constraint rather than

a column constraint.

- The FOREIGN KEY constraint requires that we identify the referenced table where the
 column or column combination appears.

 (ex) CONSTRAINT Class_facId_fk FOREIGN KEY(facId) REFERENCES Faculty (facId)

- In an out-of-line constraint we must use the keyword CONSTRAINT, which can be optionally

followed by an identifier.

- The SQL standard allow us to specify what is to be done with records containing the foreign
 key values when the records they relate to are deleted in their home table.

 (ex) CONSTRAINT Class_facId_fk FOREIGN KEY(facId) REFERENCES Faculty (facId) ON
 DELETE CASCADE;

 ON DELETE CASCADE: delete all class records for that faculty member
 ON DELETE SET NULL: set the facId in the class record to a null value
 No Specification: not allow the deletion of a Faculty record

- The table uniqueness constraint mechanism can be used to specify that the values in a
 combination of columns must be unique.

23

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 (ex) CONSTRAINT Class_Schedule_room_uk UNIQUE (schedule, room)

(NOTE) 5.3.3 CREATE INDEX
 5.3.4 ALTER TABLE, RENAME TABLE
 5.3.5 DROP Statements will be discussed later.
5.4 Manipulating the Database: SQL DML

- The SQL DML statements are SELECT, UPDATE, INSERT, and DELETE.

5.4.1 Introduction to the SELCT Statement

- The SELECT statement is used for retrieval of data.

 (Form) SELECT [DISTICNT] col-name [AS newname], [, col-name …] …
 FROM table-name [alias] [, table-name] …
 [WHERE predicate]
 [GROUP BY col-name [, col-name] … [HAVING predicate]]
 or,
 [ORDER BY col-name [, col-name] …];

 (NOTE) Consider The University Database (FIGURE 5.4 on p171 of the textbook) for
 Examples.

 Student (StuId, lastName, firstName, major, credits)
 Faculty (facId, name, department, rank)
 Class (classNumber, facId, schedule, room)
 Enroll (stuID, classNumber, grade)

- Example 1. Simple Retrieval with Condition

Question: Get names, IDs, and number of credits of all Math majors.

SQL Query  SELECT lastName, firstName, stuId, credits
 FROM Student
 WHERE major = ‘Math’;

- Example 2. Use of * for “all columns”

 Question: Get all information about CSC Faculty.

24

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 SQL Query  SELECT *
 FROM Faculty
 WHERE department = ‘CSC’;

 or

 SELECT facId, name, department, rank
 FROM Faculty
 WHERE department = ‘CSC’;

- Example 3. Retrieval without Condition, Use of “Distinct,” Use of Qualified Names

 Question: Get the course number of all courses in which students are enrolled.

 SQL Query  SELECT classNumber
 FROM Enroll;

 To eliminate the duplicates, we need to use “DISTICT” option.
  SELECT DISTINCT classNumber

 FROM Enroll;

 In any retrieval, especially if there is a possibility of confusion because of the
 same column name appears on two different tables

  SELECT DISTINCT Enroll.classNumber
 FROM Enroll;

- Example 4. Retrieving an Entire Table

 Question: Get all information about all students.

 SQL Query  SELECT *
 FROM Students;

- Example 5. Use of “ORDER BY” and AS

Question: Get names and IDs of all Faculty members, arranged in alphabetical order by name.
 Call the resulting columns FacultyName and FacultyNumber

 SQL Query  SELECT name AS FacultyName, facId AS FacultyNumber
 FROM Faculty

25

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 ORDER BY name;

 We could break the “tie” by giving a minor order
  SELECT name AS FacultyName, facId AS FacultyNumber
 FROM Faculty
 ORDER BY name, department;
 (Note) ASC (: default) or DESC
- Example 6. Use of Multiple Conditions

 Question: Get names of all math majors who have more than 30 credits

 SQL Query  SELECT lastName, firstName
 FROM Student
 WHERE major = ‘Math’ AND credits > 30;

5.4.2 SELECT Using Multiple Tables

- Example 7. Natural Join

 Question: Find IDs and names of all students taking ART103A.

 SQL Query  SELECT Enroll.stuId, lastName, firstName
 FROM Student, Enroll
 WHERE classNumber = ‘ART103A’ AND Enroll.stuId = Student.stuId;

• We could have written “Student.stuId” instead of “Enroll.stuId”.

• We did not need to use the qualified name for classNumber because it does not appear on
 the Student table.

• Without the condition, Enroll.stuId = Student.stuId the result will be a Cartesian product.

• Note that some relational DBMSs allow the phrase, “FROM Enroll NATURAL JOIN Student”

- Example 8. Natural Join with Ordering

Question: Find stuId and grade of all students taking any course taught by the Faculty
 member whose facId is F110. Arrange in order by stuId.

SQL Query  SELECT stuId, grade

26

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 FROM Class, Enroll
 WHERE facId = ‘F110’ AND Class.classNumber = Enroll.classNumber
 ORDER BY stuId ASC;

- Example 9. Natural Join of Three Tables

Question: Find course numbers and the names and majors of all students enrolled in the
 courses taught by Faculty member F110.
SQL Query  SELECT Enroll.classNumber, lastName, firstName, major
 FROM Class, Enroll, Student
 WHERE facId = ‘F110’ AND Class.classNumber = Enroll.classNumber
 AND Enroll.stuId = Student.stuId;

• SQL ignores the order in which the tables are named in the FROM line.

• Most sophisticated relational database management systems choose which table to use first
 and which condition to check first, using an optimizer to identify the most efficient
 method of accomplishing any retrieval before choosing a plan.

- Example 10. Use of Aliases

Question: Get a list of all courses that meet in the same room, with their schedules and room
 numbers.

 SQL Query  SELECT A.classNumber, A.schedule, A.room, B.classNumber, B.schedule
 FROM Class A, Class B
 WHERE A.room = B.room AND A.classNumber < B.classNumber;

• We added the second condition “A.classNumber < B.classNumber” to keep every classfrom
 being included, since every class obviously satisfies the requirement that it meets in the
 same room as itself. It also keeps records with the two classes reserved from appearing.

• Incidentally, we can introduce aliases in any SELECT, even when they are not required.

- Example 11. Other Joins

Question: Find all combinations of students and faculty where the student’s major is different
 from the faculty member’s department.

 SQL Query  SELECT stuId, S.lastName, S.firstName, major, facId, F.name, department

27

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 FROM Student S, Faculty F
 WHERE S.major <> F.department;

• We might use any type of predicate as the condition for the join. If we want to compare two
 columns, however, they must have the same domains. (note) “major” and “department” have
 the same domain.

- Example 12. Using a Subquery with Equality

 Question: Find the numbers of all the courses taught by Byrne of the Math department.

 SQL Query  SELECT classNumber
 FROM Class
 WHERE facId = (SELECT facId
 FROM Faculty
 WHERE name = ‘Byrne’ AND department = ‘Math’);

 • This can also be done by using a natural join
  SELECT classNumber
 FROM Class, Faculty
 WHERE Class.facId = Faculty.facId AND name = ‘Byrne’ AND department = ‘Math’;

 • When you write a subquery involving two tables, you name only one table in each select. The
 query to be done first, the subquery, is the one in parentheses, following the first
 WHERE line. The main query is performed using the result of the subquery.

- Example 13. Subquery Using ‘IN’

 Question: Find the names and IDs of all Faculty members who teach a class in Room H221.

 SQL Query  SELECT name, facId
 FROM Faculty
 WHERE facId IN (SELECT facId
 FROM Class
 WHERE room = ‘H221’);

 • This can also be done by using a natural join
  SELECT name, Faculty.facId

28

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 FROM Class, Faculty
 WHERE Class.facId = Faculty.facId AND room = ‘H221’;

- Example 14. Nested Subqueries

 Question: Get an alphabetical list of names and IDs of all students in any class taught by F110.

 SQL Query  SELECT lastName, firstName, stuId
 FROM Student
 WHERE stuId IN (SELECT stuId
 FROM Enroll
 WHERE classNumber IN
 (SELECT classNumber
 FROM class
 WHERE facId = ‘F110’));
 ORDER BY lastName, firstName ASC;

• Note that the ordering refers to the final result, not to any intermediate steps.

• We could have performed either part of the operation as a natural join and the other part as
 a subquery, mixing both methods.

- Example 15. Query Using EXISTS

 Question: Find the names of all students enrolled in CSC201A.

 SQL Query  SELECT lastName, firstName
 FROM Student
 WHERE EXISTS (SELECT *
 FROM Enroll
 WHERE Enroll.stuId = Student.stuId AND
 classNumber = ‘CSC201A’);

• This can also be done by using a join or a subquery with IN.

• Notice we needed to use the name of the main query table (“Student”) in the subquery
 to express the condition “Student.stuId = Enroll.stuId”. In general, we avoid mentioning a
 table not listed in the FROM for that particular query, but it is necessary and permissible
 to do so in this case. This form is called correlated subquery.

29

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

- Example 16. Query Using NOT EXISTS

 Question: Find the names of all students who are not enrolled in CSC201A.

 SQL Query  SELECT lastName, firstName
 FROM Student
 WHERE NOT EXISTS (SELECT *
 FROM Enroll
 WHERE Enroll.stuId = Student.stuId AND
 classNumber = ‘CSC201A’);

 • Unlike the previous example, we cannot readily express this using a join or an IN subquery.

5.4.3 SELECT with Other Operators

- Example 17. Query using UNION

Question: Get IDs of all Faculty who are assigned to the History department or who teach in
 Room H221.

 SQL Query  SELECT facId
 FROM Faculty
 WHERE department = ‘History’

 UNION

 SELECT facId
 FROM Class
 WHERE room = ‘H221’;

• In addition to UNION, SQL supports the operations INTERSECT (for set intersection),
 MINUS (for set difference), and UNION ALL(for UNION allowing duplicate rows).

- Example 18(a). Using Aggregate Functions

 Question: Find the total number of students enrolled in ART103A.

 SQL Query  SELECT COUNT (DISTINCT stuId)
 FROM Enroll
 WHERE classNumber = ‘ART103A’;

30

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

• SQL has five commonly used built-in aggregate functions:
 COUNT : returns the number of values in the column,
 SUM : returns the sum of the values in the column,
 AVG : returns the mean of the values in the column,
 MAX : returns the largest value in the column,
 MIN : returns the smallest value in the column.

• The built-in functions operate on a single column of a table. Each of them eliminates null
 values first, and operates only on the remaining non-null values.

 (Note) COUNT (*) is a special use of the COUNT. It counts all the rows of a table,
 regardless of whether null values or duplicate values occur.

• Additional Function Examples:

 Example 18(b) Find the number of departments that have faculty in them.

 SQL Query  SELECT COUNT (DISTINCT department)
 FROM Faculty;

 Example 18(c) Find the sum of all the credits that history majors have.

 SQL Query  SELECT SUM (credits)
 FROM Student
 WHERE major = ‘History’;

 Example 18(d) Find the average number of credits students have.

 SQL Query  SELECT AVG (credits)
 FROM Student;

 Example 18(e) Find the student with the largest number of credits.

 SQL Query  SELECT stuId, lastName, firstName
 FROM Student
 WHERE credits = (SELECT MAX (credits)
 FROM Student);

31

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 Example 18(f) Find the ID of the student(s) with the highest grade in any course.

 SQL Query  SELECT stuId
 FROM Enroll
 WHERE grade = (SELECT MIN (grade)
 FROM Enroll);

 Example 18(g) Find names and the IDs of students who have less than the average number of
 credits.

 SQL Query  SELECT lastName, firstName, stuId
 FROM Student
 WHERE credits < (SELECT AVG (credits)
 FROM Student);

- Example 19(a). Using an Expression and a String Constant

Question: Assuming each class is three credits list, for each student, the number of classes
 he or she has completed.

 SQL Query  SELECT stuId, ‘Number of classes =’, credits/3
 FROM Student;

- Example 20(b). Use of GROUP BY

 Question: For each class, show the number of students enrolled.

 SQL Query  SELECT classNumber, COUNT (*)
 FROM Enroll
 GROUP BY classNumber;

 • Note that we could have used COUNT (DISTINCT stuId) in place of COUNT (*) in this query.

- Example 21(a). Use of HAVING

 Question: Find all courses in which fewer than three students are enrolled.

 SQL Query  SELECT classNumber
 FROM Enroll
 GROUP BY classNumber

32

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 HAVING COUNT (*) < 3;

 • HAVING is used to determine which groups have some quality, just as WHERE is used with
 tuples to determine which records have some quality. You are not permitted to use HAVING
 without a GROUP BY, and the predicate in the HAVING line must have a single value for
 each group.

- Example 22(a). Use of LIKE and NOT LIKE

 Question: Get details of all MTH courses.

 SQL Query  SELECT *
 FROM Class
 WHERE classNumber LIKE ‘MTH%’;

 • SQL allows us to use LIKE in the predicate to show a pattern string for character fields:
 % stands for any sequence of characters of any length >= 0.
 _ stands for any single character.

 (Examples)
 • classNumber LIKE ‘MTH%’
 • stuId LIKE ‘S_ _ _ _’
 • schedule LIKE ‘%9’
 • classNumber LIKE ‘%101%’
 • NOT LIKE ‘A%’

 • SELECT sname
 FROM Sailors  BoB, B...B, BB, Bob
 WHERE Sailors.sname LIKE ‘B_%B’ O O X X

 (Note) Although SQL is not case sensitive for commands,
 SQL is case sensitive for data.

- Example 23. Use of NULL

 Question: Find the stuId and classNumber of all students whose grades in that course are
 missing.

 SQL Query  SELECT classNumber, stuId

33

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 FROM Enroll
 WHERE grade IS NULL;

 • A null grade is considered to have “unknown” as a value, so it is impossible to judge whether
 it is equal to or not equal to another grade. If we put the condition
 “WHERE grad <> ‘A’ AND grad <> ‘B’ AND grad <> ‘C’ AND grad <> ‘D’ AND grad <> ‘F’” we would
 get an empty table back. SQL uses the logical expression, columnname IS [NOT] NULL.

 • Notice that it is illegal to write “WHERE grade = NULL. Also, the WHERE line is the only
 one on which NULL can appear in a SELECT statement.

5.4.4 Operators for Updating: UPDATE, INSERT, DELETE

- The UPDATE operator is used to change values in records already stored in a table.

 UPDATE tablename
 SET columnname = expression [, columnname = expression] . . .
 [WHERE predicate];

 (Example 1) Updating a Single Field of One Record

 Operation: Change the major of S1020 to Music.

 SQL Command: UPDATE Student
 SET major = ‘Music’
 WHERE stuId = ‘S1020’;

 (Example 2) Updating Several Fields of One Record

 Operation: Change Tanaka’s department to MIS and rank to Assistant.

 SQL Command: UPDATE Faculty
 SET department = ‘MIS’, rank = ‘Assistant’
 WHERE name = ‘Tanaka’;

 (Example 3) Updating Using NULL

 Operation: Change the major of S1013 from Math to NULL.

34

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 SQL Command: UPDATE Student
 SET major = NULL
 WHERE stuId = ‘S1013’;

 (Example 4) Updating Several Records

 Operation: Change grades of all students in CSC201A to A.

 SQL Command: UPDATE Enroll
 SET grade = ‘A’
 WHERE classNumber = ‘CSC201A’;

 (Example 5) Updating All Records

 Operation: Give all students three extra credits.

 SQL Command: UPDATE Student
 SET credits = credits + 3;

 (Example 6) Updating with a Subquery

 Operation: Change the room to B220 for all courses taught by Tanaka.

 SQL Command: UPDATE Class
 SET room = ‘B220’
 WHERE facId = (SELECT facId
 FROM Facult
 WHERE name = ‘Tanaka’);

- The INSERT operator is used to put new records into a table.

 INSERT
 INTO tablename [(colname [, colname]. . .)]
 VALUES (value [, value]. . .);

 • Note that the column names are optional if we are inserting values for all columns in
 their proper order.

35

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 (Example 1) Inserting a Single Record, with All Fields Specified

 Operation: Insert a new Faculty record with ID of F330, name of Jones, department of CSC,
 and rank of Instructor.

 SQL Command: INSERT
 INTO Faculty (facId, name, department, rank)
 VALUES (‘F330’, ‘Jones’, ‘CSC’, ‘Instructor’);

 (Example 2) Inserting a Single Record, without Specifying Fields

 Operation: Insert a new student record with ID of S1030, name of Alice Hunt, major of art,
 and 12 credits.

 SQL Command: INSERT
 INTO Student
 VALUES (‘S1030’, ‘Hunt’, ‘Alice’, ‘Art’, 12);

 (Example 3) Inserting a Record with Null Value in a Field

 Operation: Insert a new student record with ID of S1031, name of Maria Bono, zero credits,
 and no major.

 SQL Command: INSERT
 INTO Student (lastName, firstName, stuId, credits)
 VALUES (‘Bono’, ‘Maria’, ‘S1031’, 0);

 (note) - We rearranged the field names, but there is no confusion.
 - major will be set to null, since we excluded it from the field list in the INTO line.

 (Example 4) Inserting Multiple Records

 Operation: Create and fill a new table that shows each course and the number of students
 enrolled in it.

 SQL Command: CREATE TABLE Enrollment (
 classNumber VARCHAR2 (7) NOT NULL,
 Students NUMBER (3));

36

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 INSERT
 INTO Enrollment (classNumber, Students)
 SELECT classNumber, COUNT(*)
 FROM Enroll
 GROUP BY classNumber;

 • Enrollment table can be updated as needed, but it will not be updated automatically when
 the Enroll table is updated.

 (Example 5) Inserting DATE values and SYSDATE

 INSERT
 INTO EMPLOYEE (empId, lastName, firstName, birthdate, hireDate)
 VALUES (1001, ‘Hynes’, ‘Susan’, ’15-OCT-1985’, ’01-JUN-2010’);

 INSERT
 INTO EMPLOYEE (empId, lastName, firstName, birthdate, hireDate)
 VALUES (1001, ‘Hynes’, ‘Susan’, ’15-OCT-1985’, SYSDATE);

 • TRUNC (SYSDATE) sets the time part 00:00.
 • Oracle has several date/time functions including TO_CHAR and TO_DATE (see examples
 5(c) (on p201) and 5(d) (on p202)).

- The DELETE is used to erase records.

 DELETE
 FROM tablename
 WHERE predicate ;

 (Example 1) Deleting a Single Record

 Operation: Erase the record of student S1020.

 SQL Command: DELETE
 FROM Student
 WHERE stuId = ‘S1020’;

 (Example 2) Deleting Several Records

37

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 Operation: Erase all enrollment records for student S1020.

 SQL Command: DELETE
 FROM Enroll
 WHERE stuId = ‘S1020’;

 (Example 3) Deleting All Records from a Table

 Operation: Erase all the class records.

 SQL Command: DELETE
 FROM Class;

 • The delete command will not work on the Class table unless we first delete the Enroll
 records for any students registered in the class. Why?

 • Assuming that we have deleted the Enroll records, then this would remove all records from
 the Class table, but its structure would remain, so could add new records to it any time.

 (Example 4) DELETE with a Subquery

 Operation: Erase all enrollment records for Owen McCarthy.

 SQL Command: DELETE
 FROM Enroll
 WHERE stuId = (SELECT stuId
 FROM Student
 WHERE lastName = ‘McCarthy’
 AND firstName = ‘Owen’);

5.4.5 Creating and Using Views

- Views are an important tool for providing users with a simple, customized environment and
 for hiding data.

- A relational view is either a window into a base table or virtual table derived from one or more

underlying base tables. It does not exist in storage in the sense that the base tables do.

38

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

- The view is dynamically produced as the user works with it. Views allow a dynamic external
model to be created for the users easily.

- The reasons for providing views rather than allowing all users to work with base tables:

 • Views allow different users to see the data in different forms.
 • The view mechanism provides a simple authorization control device. View users are unaware
 of, and cannot access, certain data items.
 • Views can free users from complicated DML operations.
 • If the database is restructured on the logical level, the view can be used to keep the user’s
 model constant.

- (Form) CREATE VIEW viewname [(viewcolname [, viewcolname)] …
 AS SELECT colname [, colname] …
 FROM basetablename [, basetablename] …
 WHERE condition;

- Column names in the view can be different from the corresponding column names in the
base tables, but they must obey the same rules of construction. If we choose to make them
the same, we need not specify them twice, so we leave out the viewcolname specifications.

(Example 1) Choosing a Vertical and Horizontal Subset of a Table

 CREATE VIEW HISTMAJ (last, first, StudentId)
 AS SELECT lastName, firstName, stuId
 FROM Student
 WHERE major = ‘History’;

 (Note) The user of this view need not know the actual column names.

(Example 2) Choosing a Vertical Subset of a Table

 CREATE VIEW ClassLoc
 AS SELECT classNumber, schedule, room
 FROM Class;

(Example 3) A View Using Two Tables

 CREATE VIEW ClassList

39

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

 AS SELECT Student.stuId, lastName, firstName
 FROM Enroll, Student
 WHERE classNumber = ‘CSC101’ AND Enroll.stuId = Student.stuId;

 (Example 4) A View of a View

 CREATE VIEW ClassLoc2
 AS SELECT classNumber, room
 FROM ClassLoc;

 (Example 5) A View Using a Function

- In the SELECT statement in the AS line we can include built-in functions and GROUP BY
 options.

 CREATE VIEW ClassCount (classNumber, TotCount)
 AS SELECT classNumber, COUNT (*)
 FROM Enroll
 GROUP BY classNumber;

 or

 CREATE VIEW ClassCount2
 AS SELECT classNumber, COUNT (*) AS TotCount
 FROM Enroll
 GROUP BY classNumber;

(Example 6) Operations on View

- Once a view is created, the user can write SELECT statements to retrieve data through
 the view.
- Users can write SQL queries that refer to joins, ordering, grouping, built-in functions,
 and so on, of views just as if they were operating on base tables. Since the SELECT
 operation does not change the underlying base tables, there is no restriction on
 allowing authorized users to perform SELECT with view.

 SELECT *
 FROM ClassLoc
 WHERE room LIKE ‘H%’;

40

(Note) My lecture notes contain third-party copyrighted materials. Consequently, unauthorized use of the note contents is not permitted.

- INSERT, DELETE, and UPDATE can present problems with views.

(ex) Consider a view of student records, StudentVw1 (lastName, firstName, major, credits).
 If we were permitted to insert records, any records created through this view would
 actually be Student records, but would not contain stuId, which is a key of the Student
 table.  have to reject

 However, if we had the following view,
 StudentVww2 (stuId, lastName, firstName, credits) we should have no problem to
 inserting records, since we would be inserting Student records with a null major field,
 which is allowable.  INSERT
 INTO StudentVw2
 VALUES (‘S1040’, ‘Levine’, ‘Adam’, 30);

 (Note) However, the system should actually insert the record into the Student table.

 ClassCount (classNumber, TotCount) was meant to be a dynamic summary of the Enroll
 table rather than being a row and column subset of the table. It would not make sense
 for us to permit new ClassCount records to be inserted, since these do not correspond
 to individual rows and columns of a base table.

- The problem we have identified for INSERT apply with minor changes to UPDATE and
 DELETE as well. As a general rule, these three operations can be performed on views that
 consist of actual rows and columns of underlying base tables, provided the primary key
 is included in the view, and no other constraints are violated.

