

# Naive Bayes

# What Is Statistical Modeling?

- Uses **all attributes simultaneously**.
- Assumes attributes contribute **equally** and **independently** to the class.
- Surprisingly effective despite its unrealistic assumptions.
- Leads to the classic **Naive Bayes classifier**.

# Why Use Statistical Modeling?

- Fast and scalable to large datasets.
- Robust to irrelevant features.
- Works well with limited training data.
- Serves as a **strong baseline model**.

# Foundations: Bayes' Rule

$$P(H | E) = \frac{P(E | H)P(H)}{P(E)}$$

Where:

- $H$  = hypothesis (e.g., class = yes)
- $E$  = evidence (attribute values)
- $P(H)$  = prior probability
- $P(E | H)$  = likelihood

# Naive Bayes Assumption

- Attributes are assumed to be **independent given the class**.

$$P(H|E_1, E_2, \dots, E_k) \propto P(H) \prod_{i=1}^k P(E_i|H)$$

- This creates a simple, multiplicative probability model.

# Naive Bayes Process

- 1 Count frequencies per class
- 2 Compute  $P(E|Class)$
- 3 Compute  $P(Class)$
- 4 Multiply probabilities for new instance
- 5 Select class with highest posterior

# Example: Weather Dataset

- Predict **Play = yes/no.**
- Attributes used:
  - Outlook
  - Temperature
  - Humidity
  - Windy

# Numerical Example (Simplified)

- For a new day:
  - Outlook = sunny
  - Temperature = cool
  - Humidity = high
  - Windy = true
- Compute:  $P(\text{yes}) * P(\text{sunny}|\text{yes}) * P(\text{cool}|\text{yes}) * P(\text{high}|\text{yes}) * P(\text{true}|\text{yes})$
- Compute same for  $P(\text{no})$
- Choose larger value

# Zero-Probability Problem

- If a value never occurs with a class:

$$P(E \mid H) = 0$$

- This zeroes out the entire probability product.

# Solution: Laplace Estimator

- Add **1** to all frequency counts:

$$P(E | H) = \frac{\text{count}(E, H) + 1}{\text{count}(H) + k}$$

- $k$  = number of possible values.
- Prevents zero probabilities.

# Numeric Attributes

- Naive Bayes uses a **Gaussian distribution**:

$$f(x) = \frac{1}{\sqrt{(2\pi)\sigma}} \exp\left(\frac{-(x - \mu)^2}{2\sigma^2}\right)$$

- Compute mean  $\mu$  and standard deviation  $\sigma$  per class.

# Numeric Naive Bayes

- 1 Compute mean
- 2 Compute standard deviation
- 3 Use Gaussian density as  $P(E | Class)$

# Missing Values

- If value missing in test instance:
  - Skip attribute and renormalize.
- If missing in training:
  - Estimate probabilities using available values only.

# Example: Document Classification

- Two variants:
  - Bernoulli NB — presence/absence
  - Multinomial NB — word frequencies
- Used in:
  - Spam filtering
  - Topic classification
  - Sentiment analysis

# Example: Multinomial

- For word counts:

$$P(E | H) = N! \prod_{i=1}^k \frac{P_i^{n_i}}{n_i!}$$

- Handles word frequency information.

# Log Probabilities

- To avoid underflow:

$$\log(P) = \log(P(H)) + \sum_{i=1}^k \log(P(E_i \mid H))$$

- Prevents numeric issues
- Speeds computation

# Strengths of Naive Bayes

- Extremely fast
- Works well with high-dimensional data
- Strong baseline model
- Interpretable probability model
- Handles missing values naturally

# Weaknesses of Naive Bayes

- Assumes independence
- Sensitive to redundant features
- Gaussian assumption not always accurate
- Struggles with correlated variables

# When To Use Naive Bayes

- Best for:
  - Text classification
  - Medical/sensor data
  - High-dimensional datasets
- Not ideal for:
  - Highly correlated attributes
  - Complex feature interactions

# Summary

- Statistical modeling -> Naive Bayes
- Uses conditional independence
- Handles numeric and nominal attributes
- Laplace correction prevents zero errors
- Widely used due to speed and robustness