

Multi-Instance Learning

What Is Multi-Instance Learning?

- Each example = a **bag of instances** instead of a single instance.
- Only the **bag** has a label — individual instances do **not**.
- First introduced in drug activity prediction.
- Useful when instance-level labels are unknown or ambiguous.

Why Multi-Instance Learning?

- Used when:
 - Objects have multiple components/segments.
 - Only overall label is known.
 - Some components may be irrelevant.
- Applications:
 - Drug discovery
 - Image classification (regions)
 - Document classification (paragraphs/sentences)
 - Medical imaging (multi-slice scans)

Classical MIL Assumption

- A bag is **positive** if **at least one** instance is positive.
- A bag is **negative** if **all** instances are negative.

Bag Representation

- Example:

Bag 1: $\{x_1, x_2, x_3\} \rightarrow$ Positive

Bag 2: $\{x_4, x_5\} \rightarrow$ Negative

- Instances vary in number per bag.
- Bag-level label given; instance labels unknown.

Two Main Approaches

- 1 Aggregate the Input** → summarize each bag into one instance.
- 2 Aggregate the Output** → classify each instance, then combine.

Approach 1: Aggregating the Input

- Convert a bag to one summarized instance using:
 - Minimum
 - Maximum
 - Mean
 - Mode
 - Other statistics
- Example:

Bag of 20 instances → summarized using min/max per attr

Why Aggregate Input?

- Converts MIL into standard supervised learning.
- Allows use of algorithms like SVMs and logistic regression.
- Shown to perform surprisingly well on early MIL datasets.

Limitations of Input Aggregation

- Summary statistics may lose key instance-level info.
- Not effective when only **one special instance** determines the bag label.

Approach 2: Aggregating the Output

- Steps:
 - 1 Assign bag's label to each instance during training.
 - 2 Train classifier on all instances.
 - 3 At test time: classify each instance → aggregate predictions.

Output Aggregation Methods

- Majority voting.
- “At least one positive” rule.
- Averaging probabilities.
- Weighted voting.

Example of Output Aggregation

- Training:

- Bag A (Positive): $x_1(+)$, $x_2(+)$, $x_3(+)$

- Bag B (Negative): $x_4(-)$, $x_5(-)$

- Prediction:

- Classify each instance in a test bag.

- Combine via vote or probability.

Handling Unequal Bag Sizes

- To avoid larger bags dominating:
 - Give each instance weight = $1 / (\# \text{ of instances in its bag})$
- Ensures each **bag** contributes equally.

Pros & Cons of Output Aggregation

- **Pros:**

- Preserves instance-level details.
- Leverages standard ML models.
- Flexible and extensible.

- **Cons:**

- Requires careful combination rules.
- Bag prediction sensitive to noisy instances.

Why Standard Learning Fails

- Instances in a bag may vary widely.
- Only a few instances may determine the label.
- Standard learners assume **instance labels are known**, which is false.

Drug Activity Example

- Molecule = bag.
- Conformations = instances.
- Molecule active → at least one conformation binds well.
- Only bag-level label known → perfect use case for MIL.

MIL in Modern Settings

- MIL now used in:
 - Weakly-supervised deep learning.
 - MIL pooling layers.
 - Attention-based MIL neural networks.
 - Multi-instance SVMs.

Strengths of MIL

- Handles ambiguity in instance labels.
- Works for complex, structured objects.
- Often compatible with standard learners.

Limitations of MIL

- MIL assumption may not hold universally.
- Aggregations may oversimplify.
- High computational cost for large bags.
- Hard to interpret instance contributions.

Summary

- MIL treats each example as a **bag of instances**.
- Two solutions:
 - Aggregate input (summaries).
 - Aggregate output (combine predictions).
- Useful for images, text, molecules, medical scans.