
Instance-Based Learning



What Is Instance-Based Learning?

A lazy learning method: stores instances instead of building a
model

Predicts by comparing new cases to stored examples

Most common method: k-Nearest Neighbor (kNN)

Uses distance functions to measure similarity



Why Use Instance-Based Learning?

Conceptually simple

No training time — just store data!

Handles complex, irregular decision boundaries

Works naturally for multi-class problems



Core Idea

Given a new instance x:
1 Compute distance to all stored instances
2 Select nearest neighbor(s)
3 Predict class by neighbor class labels



Distance Functions

Euclidean (most common):

d(x , y) =
√∑

i=1
n(xi − yi)2

Other metrics:
Manhattan distance
Minkowski distance
Hamming distance (symbolic features)



Normalization Is Essential

Different scales can distort distances.

Normalize numeric attributes to [0,1]:

a′ = v − min
max − min

Prevents large-scale attributes from dominating.



Handling Nominal Attributes

If values match -> distance = 0

If values differ -> distance = 1

Missing nominal values -> treat as maximally different
(distance = 1)



Handling Missing Numeric Values

Both missing -> distance = 1

One missing -> difference = max(value, 1 - value)

Assumes missing means maximum uncertainty



k-Nearest Neighbor (kNN)

Uses k nearest neighbors instead of just one.
Majority vote for classification
Typical values: k = 3, 5, 7
Reduces sensitivity to noise



Weighted kNN

Closer neighbors get more influence:

weight = 1
distance

Improves predictions when distances vary widely.



Efficiency Challenges

Naive kNN prediction -> O(n) per query

Slow for large datasets.

Solution: accelerate using spatial data structures.



kD-Trees Overview

Binary tree that partitions data along axes.
Splits on attribute with greatest variance
Uses median value for balanced tree
Efficient in low-dimensional spaces



Building a kD-Tree

1 Choose attribute with largest variance
2 Split at median
3 Recursively partition subsets

Produces well-shaped (non-skinny) regions.



kD-Tree Search

1 Start at root
2 Descend to best leaf
3 Record best candidate
4 Backtrack
5 Sibling region worth exploring?

Yes: search sibling
No: stop



When kD-Trees Break Down

Become ineffective when:
Dimensionality is high
Data is skewed
Rectangular splits poorly model true neighborhoods



Ball Trees Overview

Use hyperspherical partitions instead of rectangles.
Each node stores center + radius
Better for high-dimensional or skewed data



Ball Tree Search Steps

1 Descend into leaf containing target region
2 Record nearest candidate
3 Backtrack
4 Skip nodes whose balls lie outside search radius
5 Explore only necessary regions



Sensitivity to Noise

Instance-based methods sensitive to:
Outliers
Duplicate conflicting points
Mislabeled instances

Mitigation:
Use k > 1
Prune noisy exemplars



Voting Feature Intervals

Fast approximate method:
Convert numeric attributes to intervals
For each interval, store class counts
Classify by voting across intervals

Useful for large datasets.



Strengths

Simple and intuitive

No training time

Flexible decision shapes

Works well with mixed data types



Weaknesses

Slow classification for large datasets

Must store entire dataset

Sensitive to irrelevant features

Struggles in high dimensions



Summary

Instance-based learning stores examples and compares new
ones directly

kNN → majority or weighted voting

Distance metrics and normalization crucial

Data structures (kD-trees, ball trees) improve speed

Best for low-dimensional, clean datasets


