Instance-Based Learning



What |s Instance-Based Learning?

A lazy learning method: stores instances instead of building a
model

Predicts by comparing new cases to stored examples
Most common method: k-Nearest Neighbor (kNN)

Uses distance functions to measure similarity



Why Use Instance-Based Learning?

m Conceptually simple
m No training time — just store datal
m Handles complex, irregular decision boundaries

m Works naturally for multi-class problems



Core Idea

m Given a new instance x:
Compute distance to all stored instances
Select nearest neighbor(s)
Predict class by neighbor class labels



Distance Functions

m Euclidean (most common):

d(x,y) = |3 nx =y

m Other metrics:

m Manhattan distance
m Minkowski distance
m Hamming distance (symbolic features)



Normalization Is Essential

m Different scales can distort distances.

m Normalize numeric attributes to [0,1]:

, v — min
a=——
max — min

m Prevents large-scale attributes from dominating.



Handling Nominal Attributes

m If values match -> distance = 0
m If values differ -> distance = 1

m Missing nominal values -> treat as maximally different
(distance = 1)



Handling Missing Numeric Values

m Both missing -> distance =1
m One missing -> difference = max(value, 1 - value)

m Assumes missing means maximum uncertainty



k-Nearest Neighbor (kNN)

m Uses k nearest neighbors instead of just one.
m Majority vote for classification
m Typical values: k =3, 5,7
m Reduces sensitivity to noise



Weighted kNN

m Closer neighbors get more influence:

weight = ———
g distance

m Improves predictions when distances vary widely.



Efficiency Challenges

m Naive kNN prediction -> O(n) per query
m Slow for large datasets.

m Solution: accelerate using spatial data structures.



kD-Trees Overview

m Binary tree that partitions data along axes.
m Splits on attribute with greatest variance
m Uses median value for balanced tree
m Efficient in low-dimensional spaces



Building a kD-Tree

Choose attribute with largest variance
Split at median
Recursively partition subsets

m Produces well-shaped (non-skinny) regions.



kD-Tree Search

Start at root
Descend to best leaf
Record best candidate
Backtrack
Sibling region worth exploring?
m Yes: search sibling
m No: stop



When kD-Trees Break Down

m Become ineffective when:
m Dimensionality is high
m Data is skewed
m Rectangular splits poorly model true neighborhoods



Ball Trees Overview

m Use hyperspherical partitions instead of rectangles.
m Each node stores center + radius
m Better for high-dimensional or skewed data



Ball Tree Search Steps

Descend into leaf containing target region
Record nearest candidate

Backtrack

Skip nodes whose balls lie outside search radius
Explore only necessary regions



Sensitivity to Noise

m Instance-based methods sensitive to:
m Outliers
m Duplicate conflicting points
m Mislabeled instances
m Mitigation:
m Usek >1
m Prune noisy exemplars



Voting Feature Intervals

m Fast approximate method:
m Convert numeric attributes to intervals
m For each interval, store class counts
m Classify by voting across intervals

m Useful for large datasets.



Strengths

m Simple and intuitive
m No training time
m Flexible decision shapes

m Works well with mixed data types



Weaknesses

m Slow classification for large datasets
m Must store entire dataset
m Sensitive to irrelevant features

m Struggles in high dimensions



Summary

Instance-based learning stores examples and compares new
ones directly

kNN — majority or weighted voting
Distance metrics and normalization crucial
Data structures (kD-trees, ball trees) improve speed

Best for low-dimensional, clean datasets



