

Association Rules

What Are Association Rules?

- Rules of the form: IF X THEN Y
- X and Y are *itemsets* (collections of attribute–value pairs)
- Widely used in *market basket analysis*
- Goal: find *frequent co-occurring patterns*
- Example:

IF humidity = high AND windy = false \rightarrow play = no

Why Association Rules?

- Reveal **hidden correlations**
- Useful in:
 - Retail analysis
 - Web usage mining
 - Medical diagnosis
 - Bioinformatics
- Not limited to classification — predicts **any attribute combination**

Key Concepts

■ Item

- Single attribute=value pair
- Example: outlook = sunny

■ Itemset

- A set of items
- Example: {outlook = rainy, windy = false}

■ Support

- Frequency of an itemset in dataset

■ Confidence

- Accuracy of a rule given its antecedent

Support & Confidence Definitions

- For rule $X \rightarrow Y$:
 - Support = (# instances containing X and Y) / N
 - Confidence = Support(X union Y) / Support(X)
- Example:

$$\text{Support} = 4/14$$

$$\text{Confidence} = (4/14) / (6/14) = 0.67$$

Association Rule Process

- 1 Find frequent itemsets
- 2 Generate candidate rules
- 3 Compute support and confidence
- 4 Meets thresholds?
 - Yes: Add rule
 - No: Discard

The Apriori Principle

- Any subset of a frequent itemset must also be frequent.
- This enables efficient pruning:
 - If $\{A, B\}$ is infrequent \rightarrow ignore $\{A, B, C\}$
- This reduces combinatorial explosion.

Frequent Itemset Mining Steps

- 1 Count all **1-itemsets**
- 2 Keep those meeting minimum support
- 3 Generate **candidate 2-itemsets**
- 4 Count occurrences
- 5 Keep those meeting support
- 6 Repeat for k-itemsets

Continue until no more itemsets meet minimum support.

Example: Weather Data Itemsets

- Example 1-itemsets (support ≥ 2):

outlook = sunny (5)

temperature = cool (4)

humidity = high (7)

play = yes (9)

- Example 2-itemsets:

outlook = sunny AND humidity = high (3)

temperature = cool AND windy = false (4)

Rule Generation from Itemsets

- For $\{A, B, C\}$ generate rules:

$A, B \rightarrow C$

$A, C \rightarrow B$

$B, C \rightarrow A$

$A \rightarrow B, C$

$B \rightarrow A, C$

$C \rightarrow A, B$

- Each rule must meet:

- Minimum support
- Minimum confidence

Example Rule Evaluation

- Itemset:

{humidity = normal, windy = false, play = yes}

- Rule:

humidity = normal AND windy = false \rightarrow play = yes

- Support = 4

- Confidence = $4/4 = 100\%$

- This rule is accepted.

Why So Many Rules?

- A single itemset may produce **many** rules.

- Example:

```
{temperature = cool, humidity = normal, windy = false,
```

- Can generate ≥ 4 rules.

- Only rules meeting confidence threshold survive.

Avoiding Rule Explosion

- We prune rules via:
 - Minimum support
- Filters rare itemsets early
 - Minimum confidence
- Removes weak rules
- Optional filters:
 - Max rule length
 - Lift / conviction measures

Algorithm Efficiency

- Apriori improves efficiency by:
 - Early pruning of candidate itemsets
 - Hash-based counting
 - Reducing dataset scans
- However, can still be expensive for:
 - Large attribute sets
 - Very low support thresholds
- Modern improvements:
 - FP-growth
 - Eclat

Example High-Quality Rules

- Rules from weather data (support ≥ 2 , confidence = 100%):
 - humidity = normal AND windy = false \rightarrow play = yes
 - outlook = overcast \rightarrow play = yes
 - temperature = cool \rightarrow humidity = normal
 - outlook = sunny AND humidity = high \rightarrow play = no
- These are highly interpretable.

Strengths of Association Rules

- Finds *hidden patterns*
- Easy to interpret
- Works well on large datasets
- No target variable required
- Domain-independent

Limitations

- Can produce large rule sets
- Many rules may be redundant or trivial
- Requires good support/confidence thresholds
- May need advanced measures for filtering

Summary

- Association rules identify *frequent co-occurring patterns*
- Apriori mines frequent itemsets via *downward closure*
- Rules are filtered using:
 - Support
 - Confidence
- Effective across many data-driven applications
- Must control rule explosion