Thread Safety



What |s Atomicity?

Atomicity means operations occur as one
Execute Entire Operation
A
Atomic

Start Operation

indivisible step.

End Operation



Example: UnsafeCountingFactorizer

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {
private long count = O;
public void service(ServletRequest req, ServletRespons
++count;

}



Example: Atomic Using AtomiclLong

@ThreadSafe
public class CountingFactorizer implements Servlet {
private final AtomicLong count = new AtomicLong(0);
public void service(ServletRequest req, ServletRespons
count.incrementAndGet () ;

}



Example: Synchronized Counter

public class SynchronizedCounter {
private int count = O;
public synchronized void increment() { count++; }
public synchronized int get() { return count; }



Example: Atomic Compound Action
(BankAccount)

public class BankAccount {
private int balance;
private int tx;
public synchronized void deposit(int amt) {
balance += amt;
tx++;



Example: Lazy Init Race

ONotThreadSafe
public class LazyInitRace {
private ExpensiveObject instance;
public ExpensiveObject getInstance() {
if (instance == null)
instance = new ExpensiveObject();
return instance;



Example: Safe Lazy Init

public synchronized ExpensiveObject getInstance() {
if (instance == null)
instance = new ExpensiveObject();
return instance;



Example: AtomicReference Not Enough

AtomicReference<String> first = ...;
AtomicReference<String> last = ...;
public void update(String f, String 1) {
first.set(f);
last.set(1);



Summary

m Single-variable atomicity: use atomic classes
m Multi-variable atomicity: use locks

m Check-then-act: needs atomicity - use locks



