
Thread Safety



What Is Atomicity?

Atomicity means operations occur as one indivisible step.



Example: UnsafeCountingFactorizer

@NotThreadSafe
public class UnsafeCountingFactorizer implements Servlet {

private long count = 0;
public void service(ServletRequest req, ServletResponse resp) {

++count;
}

}



Example: Atomic Using AtomicLong

@ThreadSafe
public class CountingFactorizer implements Servlet {

private final AtomicLong count = new AtomicLong(0);
public void service(ServletRequest req, ServletResponse resp) {

count.incrementAndGet();
}

}



Example: Synchronized Counter

public class SynchronizedCounter {
private int count = 0;
public synchronized void increment() { count++; }
public synchronized int get() { return count; }

}



Example: Atomic Compound Action
(BankAccount)

public class BankAccount {
private int balance;
private int tx;
public synchronized void deposit(int amt) {

balance += amt;
tx++;

}
}



Example: Lazy Init Race

@NotThreadSafe
public class LazyInitRace {

private ExpensiveObject instance;
public ExpensiveObject getInstance() {

if (instance == null)
instance = new ExpensiveObject();

return instance;
}

}



Example: Safe Lazy Init

public synchronized ExpensiveObject getInstance() {
if (instance == null)

instance = new ExpensiveObject();
return instance;

}



Example: AtomicReference Not Enough

AtomicReference<String> first = ...;
AtomicReference<String> last = ...;
public void update(String f, String l) {

first.set(f);
last.set(l);

}



Summary

Single-variable atomicity: use atomic classes

Multi-variable atomicity: use locks

Check-then-act: needs atomicity - use locks


