Sharing Objects

Why Sharing Objects |s Hard

m Concurrent programs center on shared, mutable state.
m Correctness requires managing both atomicity and visibility.
m Synchronization ensures memory visibility.

m Without it, threads may see stale or inconsistent values.

Visibility Problems

m Writes by one thread may never be seen by another.
m Reads may observe stale values.

m Reordering may cause instructions to appear out of order.

Example: No Visibility

public class NoVisibility {
private static boolean ready;
private static int number;

private static class ReaderThread extends Thread {
public void run() {
while (!ready) Thread.yield();
System.out.println (number) ;

public static void main(String[] args) {
new ReaderThread() .start();
number = 42;
ready = true;

Example: No Visibility

Main Reader Memory

write number=42

write ready=true

sees ready=true

sees number=0 (stale)
4.................................

Stale Data

May cause incorrect output.
May create infinite loops.
May corrupt data structures.

Difficult to debug.

Non-Atomic 64-bit Operations

m long and double may be written as two halves.

m Torn reads possible without volatile.

Locking & Visibility

m Acquiring a lock: loads latest values.

m Releasing a lock: flushes writes.

Volatile Variables

m Guarantees visibility and ordering.
m No atomicity for compound actions.

m Good for flags, lifecycle events.

Volatile Example

volatile boolean asleep;
while ('asleep) countSomeSheep();

Publication & Escape

m Occurs when an object becomes accessible outside intended
scope.

m Can lead to observation of partially constructed objects.

Unsafe Publication Example

public static Set<Secret> knownSecrets;
public void initialize() {
knownSecrets = new HashSet<Secret>();

}

Internal State Escape

class UnsafeStates {
private String[] states = { "AK", "AL" };
public Stringl[] getStates() { return states; }

Escaping this in Constructors

public class ThisEscape {
public ThisEscape (EventSource source) {
source.registerListener (new EventListener() {
public void onEvent(Event e) {
doSomething(e) ;
}
3

Safe Construction Pattern

public class SafelListener {

private final EventListener listener;

private SafelListener() {
listener = e -> doSomething(e);

}

public static Safelistener

newInstance (EventSource source) {
Safelistener safe = new SafelListener();
source.registerListener(safe.listener);
return safe;

Thread Confinement

m Avoids sharing entirely.

m Types: ad-hoc, stack confinement, Threadlocal.

ThreadlLocal Example

private static ThreadLocal<Connection> connectionHolder =
new ThreadLocal<Connection>() {
public Connection initialValue() {
return DriverManager.getConnection(DB_URL) ;
b
};

Immutability

m Immutable objects are always thread-safe.

m Rules: no state changes, all fields final, proper construction.

Immutable Example

@Immutable
public final class ThreeStooges {
private final Set<String> stooges =
new HashSet<String>();
public ThreeStooges() {
stooges.add("Moe") ;
stooges.add("Larry") ;
stooges.add("Curly");
}
public boolean isStooge(String name) {
return stooges.contains(name);

}

Publishing Immutable Objects

@Immutable

class OneValueCache {
private final BigInteger lastNumber;
private final BigInteger[] lastFactors;

public OneValueCache(BiglInteger i,
BigInteger[] factors) {
lastNumber = i;
lastFactors =
Arrays.copyOf (factors, factors.length);

Safe Publication

m Static initializers
m Volatile fields

m Final fields

m Locks

m Thread-safe collections

Mechanisms

Effectively Immutable Objects

m Mutable but not modified after publication.

m Can be used like immutable objects without locks.

Mutable Objects

m Must be safely published.

m Must be synchronized for all accesses.

Sharing Policies

m Thread-confined

m Shared read-only
m Shared thread-safe
m Guarded

Summary

m Visibility is essential.

m Synchronization ensures visibility + atomicity.
m Avoid escaping this during construction.

m Prefer immutability.

m Publish objects safely.

