
Sharing Objects



Why Sharing Objects Is Hard

Concurrent programs center on shared, mutable state.

Correctness requires managing both atomicity and visibility.

Synchronization ensures memory visibility.

Without it, threads may see stale or inconsistent values.



Visibility Problems

Writes by one thread may never be seen by another.

Reads may observe stale values.

Reordering may cause instructions to appear out of order.



Example: No Visibility
public class NoVisibility {

private static boolean ready;
private static int number;

private static class ReaderThread extends Thread {
public void run() {

while (!ready) Thread.yield();
System.out.println(number);

}
}

public static void main(String[] args) {
new ReaderThread().start();
number = 42;
ready = true;

}
}



Example: No Visibility



Stale Data

May cause incorrect output.

May create infinite loops.

May corrupt data structures.

Difficult to debug.



Non-Atomic 64-bit Operations

long and double may be written as two halves.

Torn reads possible without volatile.



Locking & Visibility

Acquiring a lock: loads latest values.

Releasing a lock: flushes writes.



Volatile Variables

Guarantees visibility and ordering.

No atomicity for compound actions.

Good for flags, lifecycle events.



Volatile Example

volatile boolean asleep;
while (!asleep) countSomeSheep();



Publication & Escape

Occurs when an object becomes accessible outside intended
scope.

Can lead to observation of partially constructed objects.



Unsafe Publication Example

public static Set<Secret> knownSecrets;
public void initialize() {

knownSecrets = new HashSet<Secret>();
}



Internal State Escape

class UnsafeStates {
private String[] states = { "AK", "AL" };
public String[] getStates() { return states; }

}



Escaping this in Constructors

public class ThisEscape {
public ThisEscape(EventSource source) {

source.registerListener(new EventListener() {
public void onEvent(Event e) {

doSomething(e);
}

});
}

}



Safe Construction Pattern

public class SafeListener {
private final EventListener listener;
private SafeListener() {

listener = e -> doSomething(e);
}
public static SafeListener
newInstance(EventSource source) {

SafeListener safe = new SafeListener();
source.registerListener(safe.listener);
return safe;

}
}



Thread Confinement

Avoids sharing entirely.

Types: ad-hoc, stack confinement, ThreadLocal.



ThreadLocal Example

private static ThreadLocal<Connection> connectionHolder =
new ThreadLocal<Connection>() {

public Connection initialValue() {
return DriverManager.getConnection(DB_URL);

}
};



Immutability

Immutable objects are always thread-safe.

Rules: no state changes, all fields final, proper construction.



Immutable Example

@Immutable
public final class ThreeStooges {

private final Set<String> stooges =
new HashSet<String>();

public ThreeStooges() {
stooges.add("Moe");
stooges.add("Larry");
stooges.add("Curly");

}
public boolean isStooge(String name) {

return stooges.contains(name);
}

}



Publishing Immutable Objects

@Immutable
class OneValueCache {

private final BigInteger lastNumber;
private final BigInteger[] lastFactors;

public OneValueCache(BigInteger i,
BigInteger[] factors) {

lastNumber = i;
lastFactors =

Arrays.copyOf(factors, factors.length);
}

}



Safe Publication Mechanisms

Static initializers

Volatile fields

Final fields

Locks

Thread-safe collections



Effectively Immutable Objects

Mutable but not modified after publication.

Can be used like immutable objects without locks.



Mutable Objects

Must be safely published.

Must be synchronized for all accesses.



Sharing Policies

Thread-confined

Shared read-only

Shared thread-safe

Guarded



Summary

Visibility is essential.

Synchronization ensures visibility + atomicity.

Avoid escaping this during construction.

Prefer immutability.

Publish objects safely.


