
Multiprocessing Introduction



Why Concurrency?

Writing correct concurrent programs is harder than sequential
ones, but threads simplify complex asynchronous workflows
into clearer, straight-line code.

Threads exploit multiprocessor systems; as core counts rise,
effective concurrency matters more.



A (Very) Brief History of Concurrency

Early systems ran a single program directly on bare
metal—inefficient and hard to develop.

Operating systems introduced processes to improve resource
utilization, fairness, and convenience.

Threads inside a process share memory, enabling fine-grained
data sharing and hardware parallelism.



Processes vs Threads

Processes: isolated address spaces; coarse-grained
communication (sockets, shared memory, semaphores, files).

Threads: share address space; each has program counter &
stack; easy to schedule on multiple CPUs.

Without synchronization, shared data access yields
unpredictable interleavings and incorrect results.



Processes vs Threads



Benefits of Threads

Exploit multiple processors: parallel execution increases
throughput; even single-CPU systems benefit by overlapping
I/O waits.

Simplicity of modeling: decompose complex async workflows
into simpler synchronous ones per thread.

Simplified async handling: thread-per-task/client model
often avoids complicated non-blocking I/O.

Responsive UIs: offload long tasks from the event thread.



Exploiting Multiple Processors

Single-threaded programs use only one CPU at a time.

Overlap blocking I/O with useful work in other threads.



Simplicity of Modeling

Assign a thread per task type (or per simulation element) to
insulate domain logic from scheduling and interleaving details.

Frameworks (e.g., servlets, RMI) let you write straight-line
request handlers while the framework manages threads & load
balancing.



Handling Asynchronous Events

Thread per connection in servers allows synchronous I/O
without stalling other requests when one blocks.

Modern OS support makes large thread counts practical in
many cases.



More Responsive User Interfaces

AWT/Swing use an Event Dispatch Thread (EDT); long
tasks in the EDT freeze the UI.

Run long tasks in background threads; post UI updates back to
the EDT.



More Responsive User Interfaces



Risks of Threads

Safety hazards: races due to unpredictable interleavings;
shared state must be properly coordinated.

Liveness hazards: deadlock, starvation, livelock—progress can
halt.

Performance hazards: context switching, cache invalidations,
synchronization overhead, reduced locality.



Safety Hazard Example — Race Condition

UnsafeSequence attempts to generate unique integers but is
not thread-safe; value++ is read+add+write, which can
interleave.

@NotThreadSafe
public class UnsafeSequence {

private int value;

/** Returns a unique value. */
public int getNext() {

return value++;
}

}



Safety Hazard Example — Race Condition



Fixing the Race with Synchronization

Making getNext synchronized serializes access;
synchronization is essential for correctness & visibility.

@ThreadSafe
public class Sequence {

@GuardedBy("this")
private int nextValue;

public synchronized int getNext() {
return nextValue++;

}
}



Fixing the Race with Synchronization



Liveness Hazards

Deadlock: two threads wait on locks held by each
other—neither can proceed.

Starvation: a thread never gets CPU or resources due to
scheduling or contention.

Livelock: threads keep responding to each other but make no
progress.



Deadlock Example



Performance Hazards

Context switches add overhead (save/restore state), reduce
locality, and consume scheduler time.

Synchronization can inhibit optimizations, flush/invalidate
caches, and create traffic on shared memory buses.



Threads Are Everywhere

Frameworks and the JVM create threads: GC/Finalizer,
Timer tasks, Servlet pools, RMI, AWT/Swing EDT.

Concurrency introduced by frameworks ripples through your
app; any code accessing shared state must be thread-safe.



Threads Are Everywhere



Practical Guidance

Identify shared state early; document synchronization policies
(e.g., @GuardedBy) and enforce them.

Prefer clear ownership & confinement; use thread-safe utilities
and frameworks thoughtfully.

Keep the EDT free; marshal long-running work to background
threads and post updates to the EDT.



Key Takeaways

Threads unlock performance and modeling simplicity—but
require discipline for safety, liveness, and performance.

Concurrency is ubiquitous in modern Java; frameworks will
create threads and call your code—be prepared.

Use synchronization (or higher-level concurrency constructs)
to make correctness and visibility explicit.


