Multiprocessing Introduction

Why Concurrency?

m Writing correct concurrent programs is harder than sequential
ones, but threads simplify complex asynchronous workflows
into clearer, straight-line code.

m Threads exploit multiprocessor systems; as core counts rise,
effective concurrency matters more.

A (Very) Brief History of Concurrency

m Early systems ran a single program directly on bare
metal—inefficient and hard to develop.

m Operating systems introduced processes to improve resource
utilization, fairness, and convenience.

m Threads inside a process share memory, enabling fine-grained
data sharing and hardware parallelism.

Processes vs Threads

m Processes: isolated address spaces; coarse-grained
communication (sockets, shared memory, semaphores, files).

m Threads: share address space; each has program counter &
stack; easy to schedule on multiple CPUs.

m Without synchronization, shared data access yields
unpredictable interleavings and incorrect results.

Processes vs Threads

Process

- file handles
+ IPC mechanisms

- memory(private)

¢
multiple

«shares process memory»
Thread

+ programCounter
+ stack
+ localVariables

Benefits of Threads

m Exploit multiple processors: parallel execution increases
throughput; even single-CPU systems benefit by overlapping
[/O waits.

m Simplicity of modeling: decompose complex async workflows
into simpler synchronous ones per thread.

m Simplified async handling: thread-per-task/client model
often avoids complicated non-blocking 1/0.

m Responsive Uls: offload long tasks from the event thread.

Exploiting Multiple Processors

m Single-threaded programs use only one CPU at a time.

m Overlap blocking 1/0 with useful work in other threads.

App cPU1 cPu2

Thread A (compute)

Thread B (compute)

Thread C (runs while B blocks on 1/0)

»

Simplicity of Modeling

m Assign a thread per task type (or per simulation element) to
insulate domain logic from scheduling and interleaving details.

m Frameworks (e.g., servlets, RMI) let you write straight-line
request handlers while the framework manages threads & load
balancing.

Handling Asynchronous Events

m Thread per connection in servers allows synchronous 1/0
without stalling other requests when one blocks.

m Modern OS support makes large thread counts practical in
many cases.

Clientl Client2 Server

Request

Thread T1 handles C1

Request

Thread T2 handles C2 (C1 may block on 1/0)

o

More Responsive User Interfaces

m AWT /Swing use an Event Dispatch Thread (EDT); long
tasks in the EDT freeze the UL

m Run long tasks in background threads; post Ul updates back to
the EDT.

More Responsive User

User Action

A 4
EDT handles event quickly
4 long task
v
Ul freezes

fix
|
"

Run long task in worker

short task
thread

v

Post updates to EDT

“a e

Ul remains responsive

Interfaces

Risks of Threads

m Safety hazards: races due to unpredictable interleavings;
shared state must be properly coordinated.

m Liveness hazards: deadlock, starvation, livelock—progress can
halt.

m Performance hazards: context switching, cache invalidations,
synchronization overhead, reduced locality.

Safety Hazard Example — Race Condition

m UnsafeSequence attempts to generate unique integers but is
not thread-safe; value++ is read+add+write, which can
interleave.

@NotThreadSafe
public class UnsafeSequence {
private int value;

/#** Returns a unique value. */
public int getNext() {
return valuet++;

}

Safety Hazard Example — Race Condition

T1 T2 Value

read (sees v)

v

read (also sees v)

write v+1

v

write v+1 (duplicate returned)

Fixing the Race with Synchronization

m Making getNext synchronized serializes access;
synchronization is essential for correctness & visibility.

Q@ThreadSafe

public class Sequence {
QGuardedBy ("this")
private int nextValue;

public synchronized int getNext() {
return nextValue++;

}

Fixing the Race with Synchronization

T1 T2 Monitor

acquire

v

nexiValue++

>

release
..b
acquire
>
nextValue++

release

liveness Hazards

m Deadlock: two threads wait on locks held by each
other—neither can proceed.

m Starvation: a thread never gets CPU or resources due to
scheduling or contention.

m Livelock: threads keep responding to each other but make no
progress.

Deadlock Example

T1 T2 Lock A Lock B

acquire A

acquire B

wait for B

wait for A

Deadlock — both wai [ET

Performance Hazards

m Context switches add overhead (save/restore state), reduce
locality, and consume scheduler time.

m Synchronization can inhibit optimizations, flush/invalidate
caches, and create traffic on shared memory buses.

Lower locality & cache

—+ More context switches ~ ——#»
effects

-
More threads Lower throughput

v

y Cache invalidations +
—» More synchronization ~ ——»
fences

Threads Are Everywhere

m Frameworks and the JVM create threads: GC/Finalizer,
Timer tasks, Servlet pools, RMI, AWT /Swing EDT.

m Concurrency introduced by frameworks ripples through your
app; any code accessing shared state must be thread-safe.

Threads Are Everywhere

M Your App
creates uses B uses uses uses
¢ (
v v) v
Serviet container -> work
GC / Finalizer threads erviet cont :::' worker RMI -> remote call threads AWT/Swing > EDT Timer -> TimerTask threads

Shared Application State

requires

Thread-Safe Access
Patterns

Practical Guidance

m Identify shared state early; document synchronization policies
(e.g., @GuardedBy) and enforce them.

m Prefer clear ownership & confinement; use thread-safe utilities
and frameworks thoughtfully.

m Keep the EDT free; marshal long-running work to background
threads and post updates to the EDT.

Key Takeaways

m Threads unlock performance and modeling simplicity—but
require discipline for safety, liveness, and performance.

m Concurrency is ubiquitous in modern Java; frameworks will
create threads and call your code—be prepared.

m Use synchronization (or higher-level concurrency constructs)
to make correctness and visibility explicit.

