Java Memory Model



What Is a Memory Model?

m Defines when writes by one thread become visible to another.

m Prevents incorrect assumptions due to CPU/compiler
reordering.

m Ensures predictable multithreaded behavior.



Why We Need It

m Modern CPUs reorder instructions.

m Without synchronization, threads may see stale or partially
built data.

m The Java Memory Model (JMM) provides rules and guarantees.



Platform Memory Models

m Multiprocessor systems have private CPU caches.
m Java hides platform-level memory model differences with JMM.

m JVM inserts memory barriers as needed.



Sequential Consistency vs Reality

m Sequential consistency: everything appears to occur in a global
order.

m Real hardware does not guarantee sequential consistency.

m JMM allows reordering unless prevented by happens-before.



Reordering Code Example

static int x = 0, y = 0;
static int a = 0, b = 0;

H

Thread one = new Thread(() -> {

a =1;
X = b;
b;
Thread two = new Thread(() -> {
b =1;
y = a;

B



Happens-Before

m The key visibility rule.
m If A happens-before B, B is guaranteed to observe A.

m No happens-before: reordering allowed.



Piggybacking on Synchronization

m Uses existing happens-before edges.
m Allows visibility without extra synchronization.

m Fragile and advanced technique.



Unsafe Publication

public class UnsafelLazyInit {
private static Resource resource;

public static Resource getInstance() {
if (resource == null)
resource = new Resource(); // unsafe
return resource;

m May reveal partially constructed objects.



Safe Publication

m synchronized
m volatile
m static initializers

m thread-safe collections

Methods



Safe Lazy Initialization (Synchronized)

class SafelLazyInit {
private static Resource resource;

public static synchronized Resource getInstance() {
if (resource == null)
resource = new Resource();
return resource;



Initialization Safety

m Final fields have guaranteed visibility after construction.
m Objects reachable through final fields also safe.

m But escape during construction breaks guarantees.



Safe Immutable Example

class SafeStates {
private final Map<String,String> states;

public SafeStates() {
states = new HashMap<>();
states.put("alaska","AK");
states.put ("wyoming","WY") ;

public String get(String s) { return states.get(s); }



Summary

m JMM defines visibility and ordering guarantees.
m Happens-before provides structure for safe threading.

m Safe publication ensures fully visible objects.



