
Java Memory Model



What Is a Memory Model?

Defines when writes by one thread become visible to another.

Prevents incorrect assumptions due to CPU/compiler
reordering.

Ensures predictable multithreaded behavior.



Why We Need It

Modern CPUs reorder instructions.

Without synchronization, threads may see stale or partially
built data.

The Java Memory Model (JMM) provides rules and guarantees.



Platform Memory Models

Multiprocessor systems have private CPU caches.

Java hides platform-level memory model differences with JMM.

JVM inserts memory barriers as needed.



Sequential Consistency vs Reality

Sequential consistency: everything appears to occur in a global
order.

Real hardware does not guarantee sequential consistency.

JMM allows reordering unless prevented by happens-before.



Reordering Code Example

static int x = 0, y = 0;
static int a = 0, b = 0;

Thread one = new Thread(() -> {
a = 1;
x = b;

});

Thread two = new Thread(() -> {
b = 1;
y = a;

});



Happens-Before

The key visibility rule.

If A happens-before B, B is guaranteed to observe A.

No happens-before: reordering allowed.



Piggybacking on Synchronization

Uses existing happens-before edges.

Allows visibility without extra synchronization.

Fragile and advanced technique.



Unsafe Publication

public class UnsafeLazyInit {
private static Resource resource;

public static Resource getInstance() {
if (resource == null)

resource = new Resource(); // unsafe
return resource;

}
}

May reveal partially constructed objects.



Safe Publication Methods

synchronized

volatile

static initializers

thread-safe collections



Safe Lazy Initialization (Synchronized)

class SafeLazyInit {
private static Resource resource;

public static synchronized Resource getInstance() {
if (resource == null)

resource = new Resource();
return resource;

}
}



Initialization Safety

Final fields have guaranteed visibility after construction.

Objects reachable through final fields also safe.

But escape during construction breaks guarantees.



Safe Immutable Example

class SafeStates {
private final Map<String,String> states;

public SafeStates() {
states = new HashMap<>();
states.put("alaska","AK");
states.put("wyoming","WY");

}

public String get(String s) { return states.get(s); }
}



Summary

JMM defines visibility and ordering guarantees.

Happens-before provides structure for safe threading.

Safe publication ensures fully visible objects.


