
Explicit Locks



Why Explicit Locks?

Before Java 5

Only synchronized and volatile available.
Limitations:

Cannot interrupt threads waiting on intrinsic locks
Cannot try to acquire lock without blocking forever
No non-block-structured locking

Java 5+

Introduced ReentrantLock with:
Interruptible locking
Timed + polled attempts
Fair vs non-fair acquisition
Flexible locking patterns



The Lock Interface

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long timeout, TimeUnit unit)

throws InterruptedException;
void unlock();
Condition newCondition();

}



Canonical Lock Usage

Lock lock = new ReentrantLock();
lock.lock();
try {

// update object state
} finally {

lock.unlock();
}

Must release in finally
Forgetting to unlock can be dangerous



Basic Locking



Timed & Polled Lock Acquisition

Helps avoid deadlock

Enables probabilistic deadlock avoidance

Supports time-budgeted tasks

Example:

if (lock.tryLock(10, TimeUnit.MILLISECONDS)) {
try { ... }
finally { lock.unlock(); }

} else {
// alternate path

}



Example: Deadlock Avoidance

if (from.lock.tryLock()) {
try {

if (to.lock.tryLock()) {
try {

// transfer
} finally { to.lock.unlock(); }

}
} finally { from.lock.unlock(); }

}



Interruptible Lock Acquisition

lock.lockInterruptibly();
try {

return send(message);
} finally {

lock.unlock();
}

Allows cancellation-friendly locking



Non-block-structured Locking

Intrinsic locks always release on block exit

ReentrantLock allows flexible patterns

Useful in hand-over-hand locking



Performance Considerations

Java 5: ReentrantLock faster

Java 6+: intrinsic locks improved

Performance evolves; no guarantee



Fairness Options

Fair locks: FIFO, prevent barging

Non-fair locks: better throughput

Fair locks may be 100× slower



Synchronized vs ReentrantLock

Feature synchronized ReentrantLock
Compact syntax yes no
Auto release yes no
Interruptible no yes
Timed lock try no yes
Fairness no yes
JVM debugging yes Improved

Note: Use ReentrantLock only when needed.



Read-Write Locks

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

}

Allows multiple readers, single writer



ReadWriteLock Behavior

Reader barging options

Writer preference options

Reentrancy

Downgrading allowed; upgrading dangerous



Example: ReadWriteMap
public class ReadWriteMap<K,V> {

private final Map<K,V> map;
private final ReadWriteLock lock =

new ReentrantReadWriteLock();
private final Lock r = lock.readLock();
private final Lock w = lock.writeLock();
public V put(K key, V value) {

w.lock();
try { return map.put(key, value); }
finally { w.unlock(); }

}
public V get(Object key) {

r.lock();
try { return map.get(key); }
finally { r.unlock(); }

}
}



Summary

ReentrantLock adds advanced features

Not a replacement for synchronized

Read-write locks boost read-heavy performance

Performance varies by JVM version


