Explicit Locks

Why Explicit Locks?

Before Java 5

m Only synchronized and volatile available.

m Limitations:
m Cannot interrupt threads waiting on intrinsic locks
m Cannot try to acquire lock without blocking forever
m No non-block-structured locking

Java 5+

m Introduced ReentrantLock with:
Interruptible locking

m Timed + polled attempts

m Fair vs non-fair acquisition

m Flexible locking patterns

The Lock Interface

public interface Lock {
void lock();
void lockInterruptibly() throws InterruptedException;
boolean tryLock();
boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException;
void unlock() ;
Condition newCondition();

Canonical Lock Usage

Lock lock = new ReentrantLock();
lock.lock();
try {
// update object state
} finally {
lock.unlock();
}

m Must release in finally
m Forgetting to unlock can be dangerous

Basic Locking

Thread wants lock

Lock available?

Yes “No
v v
Acquire lock Wait or tryLock fail
Y

Execute critical section

Unlock

Timed & Polled Lock Acquisition

Helps avoid deadlock

Enables probabilistic deadlock avoidance
Supports time-budgeted tasks

Example:

if (lock.tryLock(10, TimeUnit.MILLISECONDS)) {

try { ... }
finally { lock.unlock(); 7
} else {

// alternate path
}

Example: Deadlock Avoidance

if (from.lock.tryLock()) {

try {
if (to.lock.tryLock()) {
try {
// transfer
} finally { to.lock.unlock(); 7
}

} finally { from.lock.unlock(); }

Interruptible Lock Acquisition

lock.lockInterruptibly () ;
try {
return send(message) ;
} finally {
lock.unlock();
}

m Allows cancellation-friendly locking

Non-block-structured Locking

m Intrinsic locks always release on block exit
m ReentrantlLock allows flexible patterns

m Useful in hand-over-hand locking

Performance Considerations

m Java 5: ReentrantLock faster
m Java 6+: intrinsic locks improved

m Performance evolves; no guarantee

Fairness Options

m Fair locks: FIFO, prevent barging
m Non-fair locks: better throughput

m Fair locks may be 100x slower

Synchronized vs ReentrantlLock

Feature synchronized ReentrantLock
Compact syntax yes no

Auto release yes no
Interruptible no yes

Timed lock try no yes

Fairness no yes

JVM debugging yes Improved

m Note: Use ReentrantLock only when needed.

Read-Write Locks

public interface ReadWriteLock {
Lock readLock();
Lock writeLock();

m Allows multiple readers, single writer

ReadWriteLock Behavior

m Reader barging options
m Writer preference options
m Reentrancy

m Downgrading allowed; upgrading dangerous

Example: ReadWriteMap

public class ReadWriteMap<K,V> {
private final Map<K,V> map;
private final ReadWriteLock lock =
new ReentrantReadWriteLock();
private final Lock r = lock.readLock();
private final Lock w = lock.writeLock();
public V put(K key, V value) {
w.lock();
try { return map.put(key, value); }
finally { w.unlock(); 7}

}

public V get(Object key) {
r.lock();
try { return map.get(key); }
finally { r.unlock(); }

}

Summary

ReentrantLock adds advanced features
Not a replacement for synchronized
Read-write locks boost read-heavy performance

Performance varies by JVM version

