Composing Objects



Designing a Thread-Safe Class

m To design a thread-safe class:

Identify state variables
Identify invariants
Establish a synchronization policy

m Example: Listing 4-1 link


https://jcip.net/listings/Counter.java

Synchronization Requirements

m Smaller state space makes reasoning easier
m Invariants introduce atomicity requirements
m Related variables must be updated atomically

m Violating invariants breaks correctness



State-dependent Operations

m Examples of operations with preconditions:

m Removing from an empty queue
m Acquiring a permit when none are available

m Concurrency enables waiting until the precondition becomes
true.

m Use: Blocking queues, semaphores, locks.

m Encapsulation prevents unwanted sharing.

m Listing 4-2 link


https://jcip.net/listings/PersonSet.java

Java Monitor Pattern

m Wrap all mutable state in an object and guard access with its
intrinsic lock.

m Listing 4-3 link
m Listing 4-4 link


https://jcip.net/listings/PrivateLock.java
https://jcip.net/listings/MonitorVehicleTracker.java

Delegation (Thread-safe Components)

m Immutable types remove sharing concerns.
m Listing 4-6 link
m Listing 4-7 link

m Delegation fails when invariants span multiple variables.
m Listing 4-10 link


https://jcip.net/listings/Point.java
https://jcip.net/listings/DelegatingVehicleTracker.java
https://jcip.net/listings/NumberRange.java

Publishing Mutable State Safely

m Using thread-safe mutable objects.
m Listing 4-11 link
m Listing 4-12 link


https://jcip.net/listings/SafePoint.java
https://jcip.net/listings/PublishingVehicleTracker.java

Extending Thread-safe Classes

m Extending vector: Listing 4-13
m Client side locking: Listing 4-15

m Composition: Listing 4-16


https://jcip.net/listings/BetterVector.java
https://jcip.net/listings/ListHelpers.java
https://jcip.net/listings/ImprovedList.java

Documenting Synchronization Policies

m Document:
m Which variables are guarded
m Which locks guard them
m Atomicity guarantees
m Whether client-side locking is allowed
m Annotations: @ThreadSafe, @NotThreadSafe

@GuardedBy("lock")



Key Lessons

Encapsulation simplifies concurrency reasoning

Invariants dictate atomicity

Confinement prevents unsafe sharing

Monitor pattern is simple and safe

Delegation works only when components are independent
Publishing mutable state requires caution

Composition is safer than inheritance

Documentation is essential



