
Composing Objects



Designing a Thread-Safe Class

To design a thread-safe class:
1 Identify state variables
2 Identify invariants
3 Establish a synchronization policy

Example: Listing 4-1 link

https://jcip.net/listings/Counter.java


Synchronization Requirements

Smaller state space makes reasoning easier

Invariants introduce atomicity requirements

Related variables must be updated atomically

Violating invariants breaks correctness



State-dependent Operations

Examples of operations with preconditions:
Removing from an empty queue
Acquiring a permit when none are available

Concurrency enables waiting until the precondition becomes
true.

Use: Blocking queues, semaphores, locks.

Encapsulation prevents unwanted sharing.
Listing 4-2 link

https://jcip.net/listings/PersonSet.java


Java Monitor Pattern

Wrap all mutable state in an object and guard access with its
intrinsic lock.

Listing 4-3 link

Listing 4-4 link

https://jcip.net/listings/PrivateLock.java
https://jcip.net/listings/MonitorVehicleTracker.java


Delegation (Thread-safe Components)

Immutable types remove sharing concerns.
Listing 4-6 link
Listing 4-7 link

Delegation fails when invariants span multiple variables.
Listing 4-10 link

https://jcip.net/listings/Point.java
https://jcip.net/listings/DelegatingVehicleTracker.java
https://jcip.net/listings/NumberRange.java


Publishing Mutable State Safely

Using thread-safe mutable objects.
Listing 4-11 link
Listing 4-12 link

https://jcip.net/listings/SafePoint.java
https://jcip.net/listings/PublishingVehicleTracker.java


Extending Thread-safe Classes

Extending vector: Listing 4-13

Client side locking: Listing 4-15

Composition: Listing 4-16

https://jcip.net/listings/BetterVector.java
https://jcip.net/listings/ListHelpers.java
https://jcip.net/listings/ImprovedList.java


Documenting Synchronization Policies

Document:
Which variables are guarded
Which locks guard them
Atomicity guarantees
Whether client-side locking is allowed

Annotations: @ThreadSafe, @NotThreadSafe,
@GuardedBy("lock")



Key Lessons

Encapsulation simplifies concurrency reasoning

Invariants dictate atomicity

Confinement prevents unsafe sharing

Monitor pattern is simple and safe

Delegation works only when components are independent

Publishing mutable state requires caution

Composition is safer than inheritance

Documentation is essential


