
Atomic Variables &
Non-blocking Synchronization



Why Not Just Use Locks?

Lock contention causes OS scheduling and context switches.

Suspending threads leads to delays and priority inversion.

volatile gives visibility but not atomic compound actions.



Hardware Support

CPUs expose atomic read-modify-write primitives.

Compare and Swap (CAS): Compare expected vs actual value;
update if matching.



Atomic Classes Overview

AtomicInteger, AtomicLong, AtomicBoolean,
AtomicReference

Atomic arrays and field updaters



Locks vs Atomics Performance

Low contention: atomics scale better

High contention: locks suspend threads



Nonblocking Algorithms

An algorithm is called nonblocking if failure or suspension of
any thread cannot cause failure or suspension of another
thread.

An algorithm is called lock-free if, at each step, some thread
can make progress.

Nonblocking algorithms are immune to deadlock or priority
inversion.



Summary

Atomics expose hardware CAS from Java.

Atomics scale better under typical contention.

Non-blocking avoids deadlocks.


