Atomic Variables &

Non-blocking Synchronization



Why Not Just Use Locks?

m Lock contention causes OS scheduling and context switches.
m Suspending threads leads to delays and priority inversion.

m volatile gives visibility but not atomic compound actions.



Hardware Support

m CPUs expose atomic read-modify-write primitives.

m Compare and Swap (CAS): Compare expected vs actual value;
update if matching.



Atomic Classes Overview

m AtomicInteger, AtomicLong, AtomicBoolean,
AtomicReference

m Atomic arrays and field updaters



L ocks vs Atomics Performance

m Low contention: atomics scale better

m High contention: locks suspend threads



Nonblocking Algorithms

m An algorithm is called nonblocking if failure or suspension of
any thread cannot cause failure or suspension of another
thread.

m An algorithm is called lock-free if, at each step, some thread
can make progress.

m Nonblocking algorithms are immune to deadlock or priority
inversion.



Summary

m Atomics expose hardware CAS from Java.
m Atomics scale better under typical contention.

m Non-blocking avoids deadlocks.



