OCaml Tail Recursion

CSC 310 - Programming Languages

Factorial Example

let rec fact n =
then 1
fact (n-1)

if n
else

fact 3

0
*

DWW Wwwww

¥ ¥ X X * *

fact 2

2 x fact 1

2 % 1 x fact O
2 % 1 %1

2 % 1

2

Factorial Example (Continued)

let rec fact n =
if n = 0 then 1
else n * fact(n-1);;

val fact : int -> int = <fun>

fact 1000000; ;
Stack overflow during evaluation (looping recursion?).

Another Factorial Example

let fact n =
let rec aux x a =
if x = 0 then a
else aux (x-1) x*a
in
aux n 1
fact 3 = aux 3 1
aux 2 3

aux 1 6
6

Tail Recursion

m When a function’s result is completely computed by its
recursive call, it is called tail recursive.

m Tail recursive function can be implemented without requiring a
stack frame for each call.

m Typical patter is to use an accumulator to build up the result,
and return it in the base case.

Example

m Recursive version

let rec sumlist 1lst =
match 1lst with
| 1 ->0
| (x::xs) -> (sumlst xs) + x

m Tail Recursive version

let sumlist 1st =
let rec helper 1 a =
match 1 with
I 1 >a
| (x::xs) -> helper xs (x+a)
in
helper 1 0

Tail Recursion is Important

m Pushing a stack frame for each recursive call when operation
on a list is dangerous.
m One stack frame for each element.
m Favor tail recursion when inputs could be large
m Prefer List.fold_left to List.fold_right
m Convert recursive functions to be tail recursive

Tail Recursive Pattern (One argument)

let <fun> x =
let rec helper arg acc =
if <base case> then acc

else
let arg' = <argument to recursive call> in
let acc' = <updated accumulator> in

helper arg' acc'
in
helper x <initial value of accumulator>

Tail Recursive Pattern with Factorial

let fact x =
let rec helper arg acc =
if arg = 0 then acc

else
let arg' = arg - 1 in
let acc' = acc * arg in

helper arg' acc'
in
helper x 1

Tail Recursive Pattern with Reverse

let reverse x =
let rec helper arg acc =
match arg with

| 0 -> acc
| (h::t) ->
let arg' =t in
let acc' = h::acc in

helper arg' acc'
in
helper x []

Tail Recursive Map

let map f 1st =
let rec helper arg acc =
match arg with
| [1 -> acc
| (h::t) -> helper t ((f h)::acc)
in
reverse (helper 1lst [])

Generality of Tail Recursion

m A function that is tail recursive returns at most once (to its
caller) when completely finished
m The final result is exactly the result of the recursive call; no
stack frame needed to remember current call

m Is it possible to convert an arbitrary program into an equivalent

one, except where no call ever returns?
m Yes; this is called continuation passing style.

