
OCaml Tail Recursion
CSC 310 - Programming Languages

Factorial Example

let rec fact n =
if n = 0 then 1
else n * fact (n-1)

fact 3 = 3 * fact 2
= 3 * 2 * fact 1
= 3 * 2 * 1 * fact 0
= 3 * 2 * 1 * 1
= 3 * 2 * 1
= 3 * 2
= 6

Factorial Example (Continued)

let rec fact n =
if n = 0 then 1
else n * fact(n-1);;

val fact : int -> int = <fun>
fact 1000000;;
Stack overflow during evaluation (looping recursion?).

Another Factorial Example

let fact n =
let rec aux x a =

if x = 0 then a
else aux (x-1) x*a

in
aux n 1

fact 3 = aux 3 1
= aux 2 3
= aux 1 6
= 6

Tail Recursion

When a function’s result is completely computed by its
recursive call, it is called tail recursive.

Tail recursive function can be implemented without requiring a
stack frame for each call.

Typical patter is to use an accumulator to build up the result,
and return it in the base case.

Example

Recursive version

let rec sumlist lst =
match lst with
| [] -> 0
| (x::xs) -> (sumlst xs) + x

Tail Recursive version

let sumlist lst =
let rec helper l a =

match l with
| [] -> a
| (x::xs) -> helper xs (x+a)

in
helper 1 0

Tail Recursion is Important

Pushing a stack frame for each recursive call when operation
on a list is dangerous.

One stack frame for each element.
Favor tail recursion when inputs could be large

Prefer List.fold_left to List.fold_right
Convert recursive functions to be tail recursive

Tail Recursive Pattern (One argument)

let <fun> x =
let rec helper arg acc =

if <base case> then acc
else

let arg' = <argument to recursive call> in
let acc' = <updated accumulator> in
helper arg' acc'

in
helper x <initial value of accumulator>

Tail Recursive Pattern with Factorial

let fact x =
let rec helper arg acc =

if arg = 0 then acc
else

let arg' = arg - 1 in
let acc' = acc * arg in
helper arg' acc'

in
helper x 1

Tail Recursive Pattern with Reverse

let reverse x =
let rec helper arg acc =

match arg with
| [] -> acc
| (h::t) ->

let arg' = t in
let acc' = h::acc in
helper arg' acc'

in
helper x []

Tail Recursive Map

let map f lst =
let rec helper arg acc =

match arg with
| [] -> acc
| (h::t) -> helper t ((f h)::acc)

in
reverse (helper lst [])

Generality of Tail Recursion

A function that is tail recursive returns at most once (to its
caller) when completely finished

The final result is exactly the result of the recursive call; no
stack frame needed to remember current call

Is it possible to convert an arbitrary program into an equivalent
one, except where no call ever returns?

Yes; this is called continuation passing style.

