
OCaml Lists
CSC 310 - Programming Languages

Lists in OCaml

The basic data structure in OCaml is the list
Lists can be of arbitrary length
Lists must be homogeneous (all elements have the same type)

Operations
Construct lists with cons and nil
Destruct lists with pattern matching

Constructing Lists

Syntax
[] is empty list (“nil”)
e1 :: e2 prepends element e1 to list e2 (“cons”)

e1 is called the head and e2 is called the tail
[e1;e2;...en] is syntactic sugar for e1::e2::...::en::[]

Examples:

3::[]
2::(3::[])
[1; 2; 3]

Constructing Lists: Evaluation

[] is a value
To evaluate [e1; ...; en]

evaluate e1 to a value v1
. . .
evaluate en to a value vn
return [v1; ... vn]

Desugaring: evaluate e1::e2
evaluate e1 to a value v1
evaluate e2 to a value v2
return v1::v2

Constructing Lists: Examples

let a = [1; 1+1; 1+1+1];;
val a : int list = [1; 2; 3]
let b = 0::a;;
val b : int list = [0; 1; 2; 3]
let c = "a"::"b"::"c"::[];;
val c : string list = ["a"; "b"; "c"]

Constructing Lists: Typing

Nil:
[]: 'a list
An empty list has type t list for any type t
'a is a polymorphic type; similar to a template in C++ or
generic in Java

Cons:
If e1:t and e2:t list then e1::e2 : t list
With parens: if e1:t and e2:(t list) then (e1::e2) : (t
list)

List Typing Examples

let x = [1; "a"];;
Error: This expression has type string but an expression

was expected of type int

let y = [[1];[2;3]];;
val y : int list list = [[1]; [2; 3]]

let z = 0::[1;2;3];;
val z : int list = [0; 1; 2; 3]

let w = [1;2]::z;;
Error: This expression has type int list

but an expression was expected of type int list list
Type int is not compatible with type int list

List Structure

A list in OCaml is represented as linked list
A non-empty list is a pair (element, rest of list)
The element is the head of the list
The pointer is the tail of the list (which itself is a list)

This is an inductively defined data structure
The empty list is []
Or a pair consisting of an element and a list

List Immutability

Lists in OCaml are immutable
There is no way to mutate an element of a list
Instead, build up a new list from an old list

Example:

let x = [1;2;3;4]
let y = 5::x
let z = 6::x

Pattern Matching

The match construct is used to pull lists apart

Syntax

match e with
| p1 -> e1
| ...
| pn -> en

p1 ... pn are patterns made up of [], ::, constants, and
pattern variables (normal OCaml variables)

e1 ... en are branch expressions in which pattern variables in
the corresponding pattern are bound

Pattern Matching: Evaluation

Syntax

match e with
| p1 -> e1
| ...
| pn -> en

Evaluate e to a value v

If p1 matches v, evaluate e1 to ‘v1 and return it

. . .

Else, if pn matches v, evaluate en to vn and return it

Else, no patterns match: raise Match_failure exception

Pattern Matching Examples

let is_empty lst =
match lst with
| [] -> true
| (h::t) -> false

let hd lst =
match lst with

(h::t) -> h

“Deep” Pattern Matching

Patterns can be nested for more precise matches
a::b matches lists with at least one element
a::[] matches lists with exactly one element
a::b::[] matches lists with exactly two elements
a::b::c::d matches lists with at least three elements

Pattern Matching: Wildcards

The underscore is a wildcard pattern
Matches anything
But does not add any bindings
Useful to indicate a value will not be used

Example

let hd lst =
match lst with

(h::_) -> h

Pattern Matching Typing

Syntax

match e with
| p1 -> e1
| ...
| pn -> en

If e and p1, . . . , pn each have type t1

and e1, . . . , en each have type t2

then the entire match expression has type t2

Polymorphic Types

A function like length works for any type of list

Polymorphic functions have polymorphic types
Example: length: 'a list -> int
This says the function takes a list of any element type 'a, and
returns something of type int

Missing Cases

Exceptions for inputs that do not match any pattern
OCaml will warn you about non-exhaustive matches

Example:

let head lst = match lst with (h::_) -> h;;
Warning 8 [partial-match]: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
[]
val head : 'a list -> 'a = <fun>

head [];;
Exception: Match_failure ...

Pattern Matching Helps Make Code Robust

You cannot forget a case
The compiler issues a non-exhaustive pattern match warning

You cannot duplicate a case
The compiler issues an unused match case warning

You cannot get an exception
Cannot do something like List.hd []

Lists and Recursion

Lists have a recursive structure
so, most functions over lists will be recursive

Example

let rec length lst = match lst with
| [] -> 0
| (_::t) -> 1 + (length t)

This is similar to an inductive definition
The length of the empty list is zero
The length of a nonempty list is one plus the length of the tail

List Recursion Examples

let rec sum lst = match lst with
| [] -> 0
| (x::xs) -> x + (sum xs)

let rec last lst = match lst with
| [x] -> x
| (x::xs) -> last xs

let rec append lst1 lst2 = match lst1 with
| [] -> lst2
| (x::xs) -> x::append(xs lst2)

