OCaml Lists

CSC 310 - Programming Languages

Lists in OCaml

m The basic data structure in OCaml is the list

m Lists can be of arbitrary length

m Lists must be homogeneous (all elements have the same type)
m Operations

m Construct lists with cons and nil

m Destruct lists with pattern matching

Constructing Lists

m Syntax

m [] is empty list (“nil")
m el :: e2 prepends element el to list 2 (“cons”)
m el is called the head and e2 is called the tail

m Examples:

3::[]
2::(3:: [
[1; 2; 3]

Constructing Lists: Evaluation

m [] is a value

m To evaluate [el; ...; en]
m evaluate el to a value vi
[T
m evaluate en to a value vn
m return [v1; ... vnl

m Desugaring: evaluate el::e2
m evaluate el to a value v1
m evaluate e2 to a value v2
m return v1::v2

Constructing Lists: Examples

let a = [1; 1+1; 1+1+1];;

val a : int list = [1; 2; 3]

let b = 0::a;;

val b : int list = [0; 1; 2; 3]

let c = "a"::"b"::"c"::[1;;

val ¢ : string list = ["a"; "b"; "c"]

Constructing Lists: Typing

m Nil:
m[]: 'a list
m An empty list has type t 1ist for any type t
m 'a is a polymorphic type; similar to a template in C++ or
generic in Java
m Cons:
mIf el:t and e2:t list thenel::e2 : t list
m With parens: if el:t and e2:(t list) then (el::e2) : (¢
list)

List Typing Examples

let x = [1; "a"];;
Error: This expression has type string but an expression
was expected of type int

let y = [[1];[2;3]];;
val y : int list list = [[1]; [2; 31]

let z = 0::[1;2;3];;
val z : int list = [0; 1; 2; 3]

let w = [1;2]::2;;

Error: This expression has type int list
but an expression was expected of type int list lis
Type int is not compatible with type int list

List Structure

m A list in OCaml is represented as linked list

m A non-empty list is a pair (element, rest of list)

m The element is the head of the list

m The pointer is the tail of the list (which itself is a list)
m This is an inductively defined data structure

m The empty list is []

m Or a pair consisting of an element and a list

List Immutability

m Lists in OCaml are immutable

m There is no way to mutate an element of a list
m Instead, build up a new list from an old list

m Example:

let x = [1;2;3;4]
let y = 6::x
let z 6::x

Pattern Matching

m The match construct is used to pull lists apart
m Syntax

match e with
| p1 -> el
I

| pn -> en

m pl ... pn are patterns made up of [], ::, constants, and
pattern variables (normal OCaml variables)

m el ... en are branch expressions in which pattern variables in
the corresponding pattern are bound

Pattern Matching: Evaluation

Syntax

match e with
| p1 > el
|

| pn => en
Evaluate e to a value v

If p1 matches v, evaluate el to ‘vl and return it

Else, if pn matches v, evaluate en to vn and return it

Else, no patterns match: raise Match_failure exception

Pattern Matching Examples

let is_empty lst =
match 1lst with
| [-> true
| (h::t) -> false

let hd 1st =
match lst with
(h::t) > h

“Deep” Pattern Matching

m Patterns can be nested for more precise matches

a

a
a:
a

: :b matches lists with at least one element

:: [1 matches lists with exactly one element

:b:: [1 matches lists with exactly two elements
::b::c::d matches lists with at least three elements

Pattern Matching: Wildcards

m The underscore is a wildcard pattern

m Matches anything
m But does not add any bindings
m Useful to indicate a value will not be used

m Example

let hd 1st =
match lst with
(h::) > nh

Pattern Matching Typing

m Syntax

match e with
| p1 -> el
[

| pn -> en
m If e and p1, ..., pn each have type t1
m and el, ..., en each have type t2

m then the entire match expression has type t2

Polymorphic Types

m A function like length works for any type of list

m Polymorphic functions have polymorphic types

m Example: length: 'a list -> int
m This says the function takes a list of any element type 'a, and
returns something of type int

Missing Cases

m Exceptions for inputs that do not match any pattern

m OCaml will warn you about non-exhaustive matches
m Example:

let head 1lst = match 1st with (h::_) -> h;;
Warning 8 [partial-match]: this pattern-matching is not
Here is an example of a case that is not matched:

(]

val head : 'a list -> 'a = <fun>

head []1;;
Exception: Match_failure

Pattern Matching Helps Make Code Robust

m You cannot forget a case

m The compiler issues a non-exhaustive pattern match warning
m You cannot duplicate a case

m The compiler issues an unused match case warning
m You cannot get an exception

m Cannot do something like List.hd []

Lists and Recursion

m Lists have a recursive structure
m so, most functions over lists will be recursive
m Example

let rec length 1st = match 1lst with
' 1 >0
| (_::t) => 1 + (length t)

m This is similar to an inductive definition

m The length of the empty list is zero
m The length of a nonempty list is one plus the length of the tail

List Recursion Examples

rec sum 1lst = match 1lst with
(1 >0
(x::x8) —> x + (sum xs)

rec last 1lst = match 1lst with
[x] -> x
(x::xs8) -> last xs

rec append 1lstl 1st2 = match 1lstl with
[1 -> 1st2
(x::x8) -> x::append(xs lst2)

