OCaml Higher Order

Functions

CSC 310 - Programming Languages

Anonymous Functions

m In functional programming, passing around functions is
common, so we often do not need to give them names

m Anonymous function syntax: fun pl ... pn -> e

m pl .. pn are the paramters
m e is the body

m Example

(fun x > x + 1) 7;;
- : int = 8

Functions and Binding

m Functions are first-class, so you can bind them to other names
as you like

m In fact, let for functions is a syntactic shorthand:

m let
m let

body

fx-=
f = fun x -> body

m Function definitions can occur anywhere

First-Class Function Examples

let £ b x
let dec x = x - 1 in
let inc x = x + 1 in
if b then dec x
else inc x;;
val £ : bool -> int -> int = <fun>

let £' b x = (x equivalent to f *)
if b then (fun y -> y - 1) x
else (funy >y + 1) x;;

val £f' : bool -> int -> int = <fun>

Pattern Matching with fun

m match can be used within fun

m Idiom: use named functions if the match is complicated
m Examples

(fun 1lst -> match 1lst with (h::_) -> h) [1;2];;
Warning 8 [partial-match]: this pattern-matching is
not exhaustive.

Here is an example of a case that is not matched:

(]

- : int =1
(fun (x,y) —> x+y) (1,2);;
- : int = 3

Passing Functions as Arguments

m In OCaml functions can be be passed as arguments to a
function

m Example:

let add_one x = x + 1;;
val add_one : int -> int = <fun>

let twice f x f (f x);;
val twice : ('a -> 'a) -> 'a -> 'a = <fun>

twice add_omne 1;;
- : int = 3

The map Function

m map f 1st takes a function £ and a list 1st and applies the
function £ to each element of 1st returning a list of the results

map £ [vl; ..., vn]
= [f vi; ..., f vn]
m Example

let add_one x = x + 1;;

val add_one : int -> int = <fun>
map add_one [1; 2; 3];;

- : int list = [2; 3; 4]

map Implementation

let rec map f 1lst =
match 1st with
I 00 -> 10
| h::t -> (£ h)::(map £ t);;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

Another map Example

m Apply a list of functions to a list of integer values

let
let
let
let
let

map

- int list list [[-1;-2;-3]; [2;3;4]; [2;4;6]]

neg = x = -X;;

add_one x = x + 1;;

double x = x + X;;

fs = [neg; add_one; doublel;;
1st = [1;2;3];;

(fun f -> map f 1st) fs

Recursive Function Examples

let rec sum 1lst =
match 1lst with
| 1 ->0
| h::t -=> h + (sum t)

let rec concat 1lst =
match lst with

| [] _> nn
| h::t -=> h = (concat t)

The foldr Function

let rec foldr f acc 1lst =
match 1lst with
| 0 -> acc
| h::t -=> f h (foldr f acc t);;
val foldr : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b = <fun

let sum lst = foldr (+) 0 1st;;
val sum : int list -> int = <fun>

let concat lst = foldr () "" 1st;;
val concat : string list -> string = <fun>

The foldr Function (continued)

m foldr is a function that
m takes a function of two arguments, a final value, and a list
m processes the list by applying the function to the head and the
recursive application of the function to the rest of the list,
returning the final value for the empty list
foldr f v [vl; ...; vn] =
fvi (... (£vnwv) ...)

The Standard Library foldr

m The List module has a function List.fold_right is similar
to the foldr function above except that the order of the last
two parameters is reversed

fold_right £ [vl; ...; vn] v =
fvi (... (£vnv) ...)

Fold

m The List module also defines a function fold left, here we
will call it fold

let rec fold f acc 1lst =
match 1st with
| [-> acc
| h::t => fold f (f acc h) t;;
val fold : ('a -> 'b => 'a) -> 'a -> 'b list -> 'a = <i

m Similar to fold_right, but the changes the order of
operations

Fold (continued)

let add a x = a + x

fold
fold
fold
fold
fold
fold
fold
6

add
add
add
add
add
add
add

0 [1; 2; 3]

(add 0 1) [2; 3]
1 [2; 3]

(add 1 2) [3]

3 [3]

(add 3 3) []

6 []

Fold Right vs. Fold Left

m Fold right

foldr add 0 [1;2;3;4] =
add 1 (add 2 (add 3 (add 4 0))) = 10

m Fold

fold add 0 [1;2;3;4] =
add (add (add (add 0 1) 2) 3) 4) = 10

Which Fold to Use?

m Many problems lend themselves to fold_right

m But fold_right has a performance problem: the recursion
allocates a new stack frame for each recursive call of

fold_right

m Tail call optimization allows fold_left to use no stack frames
for each recursive call.

Combining map and fold

m Idea: map a list to another list and then fold over it to
compute the final result.

m Example:
let count_one 1lst =

fold (fun a h -> if h=1 then a+l else a) 0 1lst

let count_ones 1lst =
let counts = map count_one 1lst in
fold (fun a ¢ -> a+c) O counts

