
OCaml Higher Order
Functions

CSC 310 - Programming Languages

Anonymous Functions

In functional programming, passing around functions is
common, so we often do not need to give them names

Anonymous function syntax: fun p1 ... pn -> e

p1 .. pn are the paramters
e is the body

Example

(fun x -> x + 1) 7;;
- : int = 8

Functions and Binding

Functions are first-class, so you can bind them to other names
as you like

In fact, let for functions is a syntactic shorthand:
let f x = body
let f = fun x -> body

Function definitions can occur anywhere

First-Class Function Examples

let f b x =
let dec x = x - 1 in
let inc x = x + 1 in
if b then dec x
else inc x;;

val f : bool -> int -> int = <fun>

let f' b x = (* equivalent to f *)
if b then (fun y -> y - 1) x
else (fun y -> y + 1) x;;

val f' : bool -> int -> int = <fun>

Pattern Matching with fun

match can be used within fun

Idiom: use named functions if the match is complicated

Examples

(fun lst -> match lst with (h::_) -> h) [1;2];;
Warning 8 [partial-match]: this pattern-matching is
not exhaustive.
Here is an example of a case that is not matched:
[]

- : int = 1
(fun (x,y) -> x+y) (1,2);;
- : int = 3

Passing Functions as Arguments

In OCaml functions can be be passed as arguments to a
function

Example:

let add_one x = x + 1;;
val add_one : int -> int = <fun>

let twice f x = f (f x);;
val twice : ('a -> 'a) -> 'a -> 'a = <fun>

twice add_one 1;;
- : int = 3

The map Function

map f lst takes a function f and a list lst and applies the
function f to each element of lst returning a list of the results

map f [v1; ..., vn]
= [f v1; ..., f vn]

Example

let add_one x = x + 1;;
val add_one : int -> int = <fun>
map add_one [1; 2; 3];;
- : int list = [2; 3; 4]

map Implementation

let rec map f lst =
match lst with
| [] -> []
| h::t -> (f h)::(map f t);;

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

Another map Example

Apply a list of functions to a list of integer values

let neg = x = -x;;
let add_one x = x + 1;;
let double x = x + x;;
let fs = [neg; add_one; double];;
let lst = [1;2;3];;

map (fun f -> map f lst) fs
- int list list [[-1;-2;-3]; [2;3;4]; [2;4;6]]

Recursive Function Examples

let rec sum lst =
match lst with
| [] -> 0
| h::t -> h + (sum t)

let rec concat lst =
match lst with
| [] -> ""
| h::t -> h ^ (concat t)

The foldr Function

let rec foldr f acc lst =
match lst with
| [] -> acc
| h::t -> f h (foldr f acc t);;

val foldr : ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b = <fun>

let sum lst = foldr (+) 0 lst;;
val sum : int list -> int = <fun>

let concat lst = foldr (^) "" lst;;
val concat : string list -> string = <fun>

The foldr Function (continued)

foldr is a function that
takes a function of two arguments, a final value, and a list
processes the list by applying the function to the head and the
recursive application of the function to the rest of the list,
returning the final value for the empty list

foldr f v [v1; ...; vn] =
f v1 (... (f vn v) ...)

The Standard Library foldr

The List module has a function List.fold_right is similar
to the foldr function above except that the order of the last
two parameters is reversed

fold_right f [v1; ...; vn] v =
f v1 (... (f vn v) ...)

Fold

The List module also defines a function fold_left, here we
will call it fold

let rec fold f acc lst =
match lst with
| [] -> acc
| h::t -> fold f (f acc h) t;;

val fold : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a = <fun>

Similar to fold_right, but the changes the order of
operations

Fold (continued)

let add a x = a + x
fold add 0 [1; 2; 3]
fold add (add 0 1) [2; 3]
fold add 1 [2; 3]
fold add (add 1 2) [3]
fold add 3 [3]
fold add (add 3 3) []
fold add 6 []
6

Fold Right vs. Fold Left

Fold right

foldr add 0 [1;2;3;4] =
add 1 (add 2 (add 3 (add 4 0))) = 10

Fold

fold add 0 [1;2;3;4] =
add (add (add (add 0 1) 2) 3) 4) = 10

Which Fold to Use?

Many problems lend themselves to fold_right

But fold_right has a performance problem: the recursion
allocates a new stack frame for each recursive call of
fold_right

Tail call optimization allows fold_left to use no stack frames
for each recursive call.

Combining map and fold

Idea: map a list to another list and then fold over it to
compute the final result.

Example:

let count_one lst =
fold (fun a h -> if h=1 then a+1 else a) 0 lst

let count_ones lst =
let counts = map count_one lst in
fold (fun a c -> a+c) 0 counts

