
OCaml Bindings and Builtin
Types

CSC 310 - Programming Languages

Let Expressions

Syntax: let x = e1 in e2
x is a bound variable
e1 is the binding expression
e2 is the body expression

Evaluation
Evaluate e1 to v1
Substitute v1 for x in e2 yielding e2'
Evaluate e2' to v2 the final result

Let Expression Type Checking

Syntax: let x = e1 in e2

Type checking
If e1:t1
and assuming x:t1 implies e2:t
then (let x = e1 in e2):t

Let Definitions vs. Let Expressions

At the top-level, we write
let x = e;; (* no in e2 part)
This is called a let definition, not a let expression

Omitting in means “from now on”

“‘ # let pi = 3.14;; (* pi is now boun in the rest of the
top-level scope *)

Top-level Expressions

We can write any expression at top-level

Syntax: e;;

This means evaluate e and then ignore the result
Equivalent to let _ = e
Useful when e has a side effect, such as reading/writing a file,
printing to the screen, etc.

Let Expressions: Scope

In let x = e1 in e2, the variable x is not visible outside of
e2

Examples

let x = 1 in x + 1;;
- : int = 2
(let x = 1 in x + 1);;
- : int = 2
x;;
Error: Unbound value x
let x = 4 in (let x = x + 1 in x);;
- : int = 5

Nested Let Expressions

Uses of let can be nested

Example

let result =
(let area =

(let pi = 3.14 in
let r = 1.0 in
pi *. r *. r) in

area /. 2.0);;

Nested Let Idiom

We generally avoid nested let expressions

Sometimes a nested binding can be rewritten in a linear style

Example

let result =
let pi = 3.14 in
let r = 1.0 in
let area = pi *. r *. r in
area /. 2.0;;

Let Expressions in Functions

You can use let inside of function bodies for local variables

Example

let area r =
let pi - 3.14 in
pi *. r *. r

Shadowing Names
Shadowing is rebinding a name in an inner scope to have a
different meaning

Depends on the language

C

int x;
void f (float x) {

{
char *x = NULL;

}
}

OCaml

let x = 3;;
let g x = x + 3;;

Shadowing: Semantics

What if e2 is also a let for x?
Substitution will stop at the e2 of a shadowing x

Example
let x = 1+2 in let x = 3*x in x+1
let x = 3 in let x = 3*x in x+1
let x = 3*3 in x+1
let x = 9 in x+1
9+1
10

Shadowing Idiom

You can use shadowing to simulate mutation

let rec f x n =
if x = 0 then 1
else

let x = x - 1 in (* shadowed *)
n * (f x n)

Avoiding shadowing is clearer, and recommended
With no shadowing, when you see a variable x you know it has
not been “changed” no matter where it appears
If you want to “mutate” x, use a new name x1, x', etc.

let and match

The let expressions allows patterns

Syntax: let p = e1 in e2

p is a pattern; if e1 fails to match the pattern, then an
exception is thrown
Equivalent to match e1 with p -> e2

Examples
let [x] = [[1]] in 1::x
let h::_ = [1;2;3] in h
let () = print_int 1 in 2

Tuples

Constructed using (e1, ..., en)

Destructed using pattern matching

Tuples can be heterogeneous unlike lists

Tuple types use * to separate components

Tuple Examples

(1,2);;
- : int * int = (1, 2)

(1, "a", 2.14);;
- : int * string * float = (1, "a", 2.14)

[(1,2)];;
- : (int * int) list = [(1, 2)]

[(1,2); (1,2,3)];;
Error: This expression has type 'a * 'b * 'c

but an expression was expected of type int * int

Pattern Matching Tuples

let sum t =
match t with
| (x, y, z) -> x + y + z;;

val sum : int * int * int -> int = <fun>

let sum' (x, y, z) = x + y + z;;
val sum' : int * int * int -> int = <fun>

let addOne (x, y, z) = (x+1, y+1, z+1);;
val addOne : int * int * int -> int * int * int = <fun>

sum (addOne (1, 2, 3));;
- : int = 9

Tuple Size

Tuples of different size have different types
(a, b) has type 'a * 'b
(a, b, c) has type 'a * 'b * 'c
Patterns in the same match must have the same type

Example

let f t = match t with
| (a, b) -> a + b
| (a, b, c) -> a + b + c;;

Error: This pattern matches values of type 'a * 'b * 'c
but a pattern was expected which matches values
of type 'd * 'e

Records

Records identify elements by name whereas tuple elements are
identified by position

Syntax to define a record type:

type name = { f1: t1; ... fn: tn }

where f is a field name

Syntax to define a record value

let variable_name = { f1=v1, ..., fn=vn }

Destructing Records

Access by field name or pattern matching

In record patterns, the fields can be skipped or reordered

A field name can be used as the bound variable

Record Example

type date = { month: string; day: int; year: int };;

let mydate = { day=1; year=2000; month: "jan" };;

print_string mydate.month;;

let { month=_; day=d } = mydate in
let { year } = mydate in
let _ = print_int d in (* prints 1 *)
print_int year;; (* prints 2000 *)

