OCaml Bindings and Builtin
Types

CSC 310 - Programming Languages

Let Expressions

m Syntax: let x = el in e2
m x is a bound variable
m el is the binding expression
m e2 is the body expression
m Evaluation
m Evaluate el to v1
m Substitute v1 for x in e2 yielding e2'
m Evaluate e2' to v2 the final result

Let Expression Type Checking

m Syntax: let x = el in e2

m Type checking

mIfel:tl
m and assuming x:t1 implies e2:t
m then (let x = el in e2):t

Let Definitions vs. Let Expressions

m At the top-level, we write

m let x = e;; (* no in e2 part)
m This is called a let definition, not a let expression

m Omitting in means “from now on”

“' # let pi = 3.14;; (* pi is now boun in the rest of the
top-level scope *)

Top-level Expressions

m We can write any expression at top-level
m Syntax: e;;

m This means evaluate e and then ignore the result
m Equivalentto let _ = e

m Useful when e has a side effect, such as reading/writing a file,
printing to the screen, etc.

Let Expressions: Scope

el in e2, the variable x is not visible outside of

mIn let x
e2

m Examples

let x =1 in x + 1;;

- : int = 2

(let x =1 in x + 1);;
- : int = 2

x5

Error: Unbound value x
let x = 4 in (let x = x + 1 in x);;
- : int = 5

Nested Let Expressions

m Uses of 1let can be nested
m Example

let result =
(let area =
(let pi = 3.14 in
let r = 1.0 in
pi *. r *. r) in
area /. 2.0);;

Nested Let Idiom

m We generally avoid nested let expressions
m Sometimes a nested binding can be rewritten in a linear style
m Example

let result =
let pi = 3.14 in
let r = 1.0 in
let area = pi *. r *. r in
area /. 2.0;;

Let Expressions in Functions

m You can use let inside of function bodies for local variables
m Example

let area r =
let pi - 3.14 in
pPi *. r *x. r

Shadowing Names

m Shadowing is rebinding a name in an inner scope to have a
different meaning

m Depends on the language

m C
int x;
void f (float x) {
{
char *x = NULL;
}
}
m OCaml

let x = 3;

let g x x + 3;;

Shadowing: Semantics

m What if e2 is also a let for x7
m Substitution will stop at the e2 of a shadowing x

m Example
m let x = 1+2 in let x = 3*x in x+1
m let x = 3 in let x = 3*x in x+1
m let x = 3%3 in x+1
m let x = 9 in x+1
m 9+1
m 10

Shadowing Idiom

m You can use shadowing to simulate mutation

let rec f x n =
if x = 0 then 1
else
let x = x - 1 in (* shadowed *)
n * (f x n)

m Avoiding shadowing is clearer, and recommended

m With no shadowing, when you see a variable x you know it has
not been “changed” no matter where it appears
m If you want to “mutate” x, use a new name x1, x', etc.

let and match

m The let expressions allows patterns
m Syntax: let p = el in e2

m p is a pattern; if el fails to match the pattern, then an
exception is thrown
m Equivalent to match el with p -> e2

m Examples

m let [x] = [[1]] in 1::x
m let h::_ = [1;2;3] in h
m let () = print_int 1 in 2

Tuples

m Constructed using (e1, ..., en)
m Destructed using pattern matching
m Tuples can be heterogeneous unlike lists

m Tuple types use * to separate components

Tuple Examples

+H+

(1,2);;
- : int * int = (1, 2)

(1, "a", 2.14);;
- : int * string * float = (1, "a", 2.14)

[(1,2)];;
- : (dnt * int) 1list = [(1, 2)]

[(1,2); (1,2,3)]5;
Error: This expression has type 'a * 'b * 'c
but an expression was expected of type int * int

Pattern Matching Tuples

let sum t =
match t with
| (x, y, 2) >x+7y+2z;;
val sum : int * int * int -> int = <fun>

let sum' (x, y, z) = x +y + z;;
val sum' : int * int * int -> int = <fun>

let addOne (x, y, z) = (x+1, y+1, z+1);;

val addOne : int * int * int -> int * int * int

sum (addOne (1, 2, 3));;
- : int = 9

<fun>

Tuple Size

m Tuples of different size have different types

m (a, b) hastype 'a * 'b
m (a, b, c) hastype 'a * 'b * 'c
m Patterns in the same match must have the same type

m Example

let £ t = match t with
| (a, b) > a +b
| (a, b, c) =>a+ Db+ c;;
Error: This pattern matches values of type 'a * 'b * 'c
but a pattern was expected which matches values

of type 'd * 'e

Records

m Records identify elements by name whereas tuple elements are
identified by position

m Syntax to define a record type:
type name = { f1: t1; ... fn: tn }
where £ is a field name

m Syntax to define a record value

let variable name = { fi=v1, ..., fn=vn }

Destructing Records

m Access by field name or pattern matching
m In record patterns, the fields can be skipped or reordered

m A field name can be used as the bound variable

Record Example

type date = { month: string; day: int; year: int };;
let mydate = { day=1; year=2000; month: "jan" };;
print_string mydate.month;;

let { month=_; day=d } = mydate in

let { year } = mydate in

let _ = print_int d in (* prints 1 *)
print_int year;; (* prints 2000 *)

