
Functional Programming with
OCaml

CSC 310 - Programming Languages

Functional Programming

Functional programming
defines computations as mathematical functions
discourages use of mutable state

State: the information maintained by a computation

Functional versus Imperative

Function languages
Higher level of abstraction
Immutable state
Easier to develop robust software

Imperative languages
Lower level of abstraction
Mutable state
More difficult to develop robust software

Imperative Programming

Commands specify how to compute by destructively changing
state

The fantasy about changing state (mutability)
It is easy to reason about; the machine does this, then this, . . .

The reality
Machines are good at complicated manipulation of state
Humans are not good at understanding it

Imperative Programming

Mutation breaks referential transparency, the ability to replace
an expression with its value without affecting the result

Problem: there is no single state
Programs have many threads, spread across many cores, spread
across many processors, spread across many computers. . .
each with its own view of memory

Difficult to examine a piece of code and reason about its
behavior

Functional programming

Expressions specify what to compute
Variables never change value (like mathematical variables)
Functions (almost) never have side effects

The reality of immutability
No need to think about local state
Can perform local reasoning and assume referential transparency

ML-style (Functional) Languages

ML (Meta Language)
University of Edinburgh, 1973

Standard ML
Bell Labs and Princeton, 1990

OCaml (Objective CAML)
INRIA, 1996

Haskell (1998)
lazy functional programming

Key Features of ML

First-class functions
Functions can be parameters to other functions, return values
from functions, and stored as data

Favor immutability

Data types and pattern matching

Type inference
No need to write types in the source program
Supports parametric polymorphism

Exceptions

Garbage collection

Why Study Functional Programming

Function languages predict the future:

Garbage collection
LISP (1958), Java (1995), Python 2 (2000)

Parametric Polymorphism (generics)
ML (1973), SML (1990), Java 5 (2004), Rust (2010)

Higher-order functions
LISP (1958),

Type Inference
ML (1973), C++11 (2011), Java (2011), Rust (2010)

Pattern matching
SML (1990), Scala (2002), Rust (2010)

OCaml Compiler

One OCaml compiler is ocamlc
Produces .cmo (compiled object) and .cmi (compiled interface)
files
By default, links and produces an executable named a.out

Another OCaml compiler is ocamlopt
Produces .cmx files, which contain native code
Faster executables, but not platform independent

OCaml Compiler: Multiple Files

Suppose we have a main.ml file that depends on functions
defined in a util.ml file

Compile both together

ocamlc util.ml main.ml

Compile both separately

ocamlc -c util.ml
ocamlc util.cmo main.ml

OCaml Top-level

The top-level is a read-eval-print loop (REPL) for OCaml

The ocaml program starts the top-level

$ ocaml
OCaml version 4.14.0
Enter #help;; for help.

print_string "Hello world!\n";;
Hello world!
- : unit = ()

To exit the top-level, type Control-D

Loading Code Files into the Top-level

Load a file into the top-level

‘#use "filename.ml"

#use processes the file a line at a time

OPAM: OCaml Package Manager

opam is the OCaml package manager
Manages libraries and different compiler installations

Common packages to install
ounit, a unit testing framework
utop, a top-level with extra features
dune, a build system for larger projects

Building Projects with dune

dune automatically finds dependencies and invokes the
compiler and linker

A dune file is similar to a Makefile

dune can run a project’s test suite with “dune runtest”

A Note on ;;

;; ends an expression in the top-level
basically says “evaluate the expression”
not used in the body of a function
not needed after each function definition

;; should not be used in program source code

There is also a single semicolon in OCaml
Useful when programming imperatively with side effects

Recall: Syntax and Semantics

The syntax of a programming language refers to structure of
the language, that is, what constitutes a legal program.

The semantics of a programming language refers to the
meaning of a legal program.

Additionally, idioms are conventional ways to use a language
well

Expressions

Expressions are the basic building block

Every expression has
Syntax

Here the metavariable e to denotes an arbitrary expression
Semantics

Type checking rules (static semantics)
Evaluation rules (dynamic semantics)

Values

A value is an expression cannot be evaluated any further
Here the metavariable v denotes an arbitrary value

Evaluating an expression means computing it until it is a value.

Examples
42 is a value
42 + 1 is an expression that evaluates to 43

Types

Types classify expressions
The set of values an expression could evaluate to
Here the metavariable t denotes an arbitrary type

The expression e has type t if e will (always) evaluate to a
value of type t

Write e : t to denote e has type t
Determining that e has type t is called type checking

If Expressions

Syntax:

(if e1 then e2 else e3) : t
| | |
v v v

:bool :t :t

Type checking: the if expression type checks if e1 has type
bool and both e2 and e3 have the type t

If Expressions: Type Checking and
Evaluation

if 1 > 2 then "a" else "b";;
- : string = "b"
if true then 1 else 2;;
- : int = 1
if false then 3 else "hello";;
Error: This expression has type string but an expression was expected of type

int

Function Definitions

OCaml functions are like mathematical functions; compute a
result from provided arguments

Example:

let rec fact n = (* rec is needed for recursion *)
if n = 0 then (* = is structural equality *)

1
else

n * fact (n-1)

Type Inference

A variable declaration does not need to be annotated with a
type; the type can be inferred

Type inference happens as part of type checking
Determines a type satisfies all constraints

In the previous example, n has type int because the = operator
takes two int expressions and returns a bool expression, so n
must be an int for n = 0 to type check

Function Application

Syntax: f e1 ... e1
Parentheses are not required around arguments
No commas; use spaces instead

Evaluation
Find the definition of f
Evaluate the arguments e1 ... en to values v1 ... vn
Substitute arguments v1 ... vn for params x1 ... xn in the
body, e

call the resulting expression e'
Evaluate e' to value v, which is the final result

Example: Function Evaluation

fact 2
if 2 = 0 then 1 else 2 * fact (2-1)
2 * fact 1
2 * (if 1 = 0 then 1 else 1 * fact(1-1))
2 * 1 * fact 0
2 * 1 * (if 0 = 0 then 1 else 0 * fact(0-1))
2 * 1 * 1
2

Function Types

In OCaml, -> is the function type constructor
Type t1 -> t is a function with argument or domain type t1
and return or range type t
Type t1 -> t2 -> t is a function that takes two inputs, of
types t1 and t2, and returns a value of type t (kind of – more
on this later)

Example:

not;;
- : bool -> bool = <fun>
(+);;
- : int -> int -> int = <fun>

Type Checking Function Application

Syntax: f e1 ... en

Type checking
If f: t1 -> ... -> tn -> u
and e1:t1, . . . en:tn
then f e1 ... en : u

Type Checking Function Definition

Syntax: let rec f x1 ... xn = e

Type checking
Conclude the f : t1 -> ... -> tn -> u if e:u under the
assumptions:

x1:t1, . . . xn:tn (arguments with their types)
f : t1 -> ... -> tn -> u (for recursion)

Type Annotations

The syntax (e : t) asserts that “e has type t”
This can be added (almost) anywhere

Examples:

let (x : int) = 3

let fn (x : int) : float =
(float_of_int x) *. 2.14

Checked by the compiler – very useful for debugging

