Functional Programming with

OCaml

CSC 310 - Programming Languages

Functional Programming

m Functional programming
m defines computations as mathematical functions
m discourages use of mutable state

m State: the information maintained by a computation

Functional versus Imperative

m Function languages
m Higher level of abstraction
m Immutable state
m Easier to develop robust software
m Imperative languages
m Lower level of abstraction
m Mutable state
m More difficult to develop robust software

Imperative Programming

m Commands specify how to compute by destructively changing
state

m The fantasy about changing state (mutability)
m It is easy to reason about; the machine does this, then this, ...
m The reality

m Machines are good at complicated manipulation of state
m Humans are not good at understanding it

Imperative Programming

m Mutation breaks referential transparency, the ability to replace
an expression with its value without affecting the result

m Problem: there is no single state

m Programs have many threads, spread across many cores, spread
across many processors, spread across many computers. . .
m each with its own view of memory

m Difficult to examine a piece of code and reason about its
behavior

Functional programming

m Expressions specify what to compute
m Variables never change value (like mathematical variables)
m Functions (almost) never have side effects
m The reality of immutability
m No need to think about local state
m Can perform local reasoning and assume referential transparency

ML-style (Functional) Languages

ML (Meta Language)

m University of Edinburgh, 1973
Standard ML

m Bell Labs and Princeton, 1990
OCaml (Objective CAML)

m INRIA, 1996
Haskell (1998)

m lazy functional programming

Key Features of ML

First-class functions

m Functions can be parameters to other functions, return values
from functions, and stored as data

Favor immutability
Data types and pattern matching

Type inference

m No need to write types in the source program
m Supports parametric polymorphism

Exceptions

Garbage collection

Why Study Functional Programming

Function languages predict the future:

m Garbage collection

m LISP (1958), Java (1995), Python 2 (2000)
m Parametric Polymorphism (generics)

= ML (1973), SML (1990), Java 5 (2004), Rust (2010)
m Higher-order functions

m LISP (1958),
m Type Inference

m ML (1973), C++11 (2011), Java (2011), Rust (2010)
m Pattern matching

m SML (1990), Scala (2002), Rust (2010)

OCaml Compiler

m One OCaml compiler is ocamlc
m Produces .cmo (compiled object) and .cmi (compiled interface)
files
m By default, links and produces an executable named a.out
m Another OCaml compiler is ocamlopt
m Produces .cmx files, which contain native code
m Faster executables, but not platform independent

OCaml Compiler: Multiple Files

m Suppose we have a main.ml file that depends on functions
defined in a util.ml file

m Compile both together
ocamlc util.ml main.ml
m Compile both separately

ocamlc -c util.ml
ocamlc util.cmo main.ml

OCaml Top-level

m The top-level is a read-eval-print loop (REPL) for OCaml
m The ocaml program starts the top-level

$ ocaml
OCaml version 4.14.0
Enter #help;; for help.

print_string "Hello world!\n";;
Hello world!
- : unit = Q)

m To exit the top-level, type Control-D

Loading Code Files into the Top-level

m Load a file into the top-level
‘#use "filename.ml"

m #use processes the file a line at a time

OPAM: OCaml Package Manager

m opam is the OCaml package manager

m Manages libraries and different compiler installations
m Common packages to install

m ounit, a unit testing framework

m utop, a top-level with extra features

m dune, a build system for larger projects

Building Projects with dune

m dune automatically finds dependencies and invokes the
compiler and linker

m A dune file is similar to a Makefile

m dune can run a project’s test suite with “dune runtest”

A Note on

- e
- e

m ;; ends an expression in the top-level

m basically says “evaluate the expression”
m not used in the body of a function
m not needed after each function definition

m ;; should not be used in program source code

m There is also a single semicolon in OCaml

m Useful when programming imperatively with side effects

Recall: Syntax and Semantics

m The syntax of a programming language refers to structure of
the language, that is, what constitutes a legal program.

m The semantics of a programming language refers to the
meaning of a legal program.

m Additionally, idioms are conventional ways to use a language
well

Expressions

m Expressions are the basic building block

m Every expression has

m Syntax

m Here the metavariable e to denotes an arbitrary expression
m Semantics

m Type checking rules (static semantics)

m Evaluation rules (dynamic semantics)

Values

m A value is an expression cannot be evaluated any further

m Here the metavariable v denotes an arbitrary value
m Evaluating an expression means computing it until it is a value.
m Examples

m 42 is a value
m 42 + 1 is an expression that evaluates to 43

Types

m Types classify expressions

m The set of values an expression could evaluate to
m Here the metavariable t denotes an arbitrary type

m The expression e has type t if e will (always) evaluate to a
value of type t

m Write e : t to denote e has type t

m Determining that e has type t is called type checking

If Expressions

m Syntax:

(if el then e2 else e3) : t
| | |
v v v
:bool 't 't

m Type checking: the if expression type checks if el has type
bool and both e2 and e3 have the type t

If Expressions: Type Checking and
Evaluation

if 1 > 2 then "a" else "b";;

- : string = "b"

if true then 1 else 2;;

- :int =1

if false then 3 else "hello";;

Error: This expression has type string but an expression w:
int

Function Definitions

m OCaml functions are like mathematical functions; compute a
result from provided arguments

m Example
let rec fact n = (* rec is needed for recursion *)
if n = 0 then (* = is structural equality *)
1
else

n *x fact (n-1)

Type Inference

m A variable declaration does not need to be annotated with a
type; the type can be inferred

m Type inference happens as part of type checking
m Determines a type satisfies all constraints

m In the previous example, n has type int because the = operator
takes two int expressions and returns a bool expression, so n
must be an int for n = 0 to type check

Function Application

m Syntax: £ el ... el
m Parentheses are not required around arguments
m No commas; use spaces instead

m Evaluation
m Find the definition of £

m Evaluate the arguments el ... entovaluesvl ... vn
m Substitute arguments v1 ... vn for params x1 ... xn in the
body, e

m call the resulting expression e'
m Evaluate e' to value v, which is the final result

H B HE B H E BB
N NDNDNNDDN

Example: Function Evaluation

fact 2

if 2 = 0 then 1 else 2 * fact (2-1)

fact 1

(if 1 = 0 then 1 else 1 * fact(1-1))

1 x fact O

1 % (if 0 = 0 then 1 else 0 * fact(0-1))
1 x1

* X ¥ ¥ *

Function Types

m In OCaml, -> is the function type constructor

m Type t1 -> t is a function with argument or domain type t1
and return or range type t

m Type tl -> t2 -> t is a function that takes two inputs, of
types t1 and t2, and returns a value of type t (kind of — more
on this later)

m Example:

not;;

- : bool -> bool = <fun>

(+);;

- : int -> int -> int = <fun>

Type Checking Function Application

m Syntax: f el ... en

m Type checking

miIff: t1 -> ... => tn -> u
m and el:tl, ... en:tn
mthenf el ... en : u

Type Checking Function Definition

m Syntax: let rec £ x1 ... xn = e
m Type checking
m Conclude the £ : t1 -> ... => tn -> uif e:u under the
assumptions:
m x1:t1, ... xn:tn (arguments with their types)

mf:tl->...->1tn -> u/(for recursion)

Type Annotations

m The syntax (e : t) asserts that “e has type t"

m This can be added (almost) anywhere
m Examples:
let (x : int) = 3
let fn (x : int) : float =
(float_of_int x) *. 2.14

m Checked by the compiler — very useful for debugging

