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Uncertainty

m General situation:

m Observed variables (evidence): agent knows certain things
about the state of the world

m Unobserved variables: agent needs to reason about other
aspects

m Model: agent knows something about how the known variables
relate to the unknown variables

m Probabilistic reasoning gives us a framework for managing our
beliefs and knowledge



Random Variables

m A random variable is some aspect of the world about which we
(may) have uncertainty

m R =is it raining?
m T =is it hot or cold?
m D = How long will it take to drive to work?
m We denote random variables with capital letters

m Random variables have domains

m R € {true,false}
m T € {hot,cold}
m De[0,0)



Probability Distributions

m Associate a probability with each value

m Example: temperature P(T)

T P
hot | 0.5
cold | 0.5

m Example: weather P(W)

w P
sun | 0.6
rain | 0.1
fog | 0.3




Probability Distributions

m Unobserved random variables have distributions
m A distribution is a table of probabilities of values
m A probability is a single number

P(W = rain =0.1
m Must have:

VxP(X =x)>0and >, P(X=x)=1



Joint Distributions

m A joint distribution over a set of random variables

X1, X2, ..., X, specifies a real number for each assignment (or
outcome):

P(X1=x1,X =x0,..., Xy = Xn)
P(x1,X2, ..., Xn)

m Must obey

P(x1,x2,...,xp) >0

z P(x1,x2,...,xp) =1

(X1,X2,++,Xn)

m Size of distribution of n variables with domain sizes d?

m Only practical to write out small distributions



m Example:

Joint Distribution

T

w

hot
hot
cold
cold

sun
rain
sun
rain

0.4
0.1
0.2
0.3




Probabilistic Models

m A probabilistic model is a joint distribution over a set of
random variables

m Probabilistic models:

(Random) variables with domains

Assignments are called outcomes

m Joint distributions: say whether assignments (outcomes) are
likely

Normalized: sum to 1.0

Ideally only certain variables directly interact

m Constraint satisfaction problems:

m Variables with domains
m Constraints: state whether assignments are possible
m Ideally only certain variables directly interact



Events

m An event is a set E of outcomes

P(E)= >  Pla,....x)

(x15--xn)EE

m From a joint distribution we can calculate the probability of any
event

m Typically, the events we care about are partial assignments, for
example P(T = hot)



Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): combine collapsed rows by
adding

Example:
m P(t)=>,P(t,s) = P(T =hot) = 0.5, P(T =cold) = 0.5
m P(w)=>_P(t,s) = P(S =sun) = 0.6, P(S =rain) = 0.4
P(X1=x1) = >, P(X1 = x1, X2 = x2)



Conditional Probabilities

m A simple relation between joint and conditional probabilities

m Definition:

m Example:

P(W=sT=c) 02 _

( s | c) AT =0 oz O




Normalization

m Select the joint probabilities matching the evidence
m Normalize the selection

m Example:

P(W=s5,T =c)
P(T = ¢)
P(W=s,T =c¢)
PWW=s,T=c)+P(W=r,T =c)
0.2

=% —04
02+03 0

PW=s|T=c)=




Probabilistic Inference

m Probabilistic inference: compute a desired probability from
other known probabilities (for example, from joint)

m We generally compute conditional probabilities
m These represent the agent's beliefs given the evidence

m Probabilities change with new evidence

m Observing new evidence causes beliefs to be updated



Inference by Enumeration

m General case:

m Evidence variables: Ey,...,Ex =e1,..., e
m Query variable: @
m Hidden variables: Hy,..., H,

m We want: P(Q | e1,...,ek)
m Steps:

Select the entries consistent with the evidence
Sum out H to get joint of Query and evidence
Normalize



Product Rule

m Sometimes we have conditional distributions but want the joint

P(y)P(x | y) = P(x,y) & P(x|y) =




The Chain Rule

m More generally, we can always write any joint distribution as an
incremental product of conditional distributions

P(X17X2,X3) = P(Xl)P(X2 ‘ X1)P(X3 ’ X1,X2)

m General form:

P(x1,%2,...,Xn) = H P(xi | x1,...,xi—1)
i



Bayes' Rule

m Two ways to factor a joint distribution over two variables:

P(x,y) = P(x | y)P(y) = P(y | x)P(x)

m Dividing, we get

Py [ x)

PUx 1Y) = pp5

P(x)

m Why is this useful?

m We can build one conditional from its reverse
m Often one conditional is tricky but the other one is simple
m Foundation of many systems



Inference with Bayes' Rule

m Example: diagnostic probability from causal probability

P(effect | cause)P(cause)

P(cause | effect) = P(effect)




Independence

m Two variables are independent, denoted X 1L Y, in a joint
distribution if:

P(X,Y) = P(X)P(Y)

Vx,yP(x,y) = P(x)P(y)

m Says the joint distribution factors into a product of two simple
ones
m Usually variables are not independent

m Can use independence as a modeling assumption

m Independence can be a simplifying assumption
m Empirical joint distributions: at best “close” to independent



Conditional Independence

m Example: P(Toothache, Cavity, Catch)

m If | have a cavity, the probability that the probe catches in it
does not depend on whether | have a toothache.

m P(+catch | +toothache, +cavity) = P(+catch | 4-cavity)
m The same independence holds if | do not have a cavity:
m P(+catch | +toothache, —cavity) = P(+catch | —cavity)
m Catch is conditionally independent of Toothache given Cavity:

m P(Catch | Toothache, Cavity) = P(Catch | Cavity)



Conditional Independence

m Unconditional (absolute) independence is rare

m Conditional independence is our most basic robust form of
knowledge about uncertain environments.

m X 1L Y| Z: X is conditionally independent of Y given Z
m If and only if:
Vx,y,z: P(x,y | z) = P(x | z)P(y | z)
m or, equivalently, if and only if:

Vx,y,z: P(x|z,y) = P(x| 2)



Reasoning over Time or Space

m Often, we want to reason about a sequence of observations

m Speech recognition
m Robot localization
m Medical monitoring

m Need to introduce time (or space) into our models



Markov Models

m Value of X at a given time is called the state
m TODO figure

m Parameters: called transition probabilities or dynamics, specify
how the state evolves over time (also, initial state probabilities)

m Stationary assumption: transition probabilities the same at all
times

m Same as MDP transition model, but no choice of action



Joint Distribution of a Markov Model

m TODO figure
m Joint distribution:
P(X1, X2, X3, X4) = P(X1)P(X2 | X1)P(X3 | X2)P(Xa | X3)

m More generally:

P(X1, Xo, ..., Xn) = P(X))P(X2 | X1)P(X3 | X2) ... P(XT | X7_1)

N
= P(X1) [T(P(Xe | Xe-1)

t=2

m Questions to be resolved:

m Does this indeed define a joint distribution?

m Can every joint distribution be factored this way, or are we
making some assumptions about the joint distribution by using
this factorization?



Chain Rule and Markov Models

m From the chain rule, every joint distribution over Xi, Xz, X3, X4
can be written as:

P(X1, X2, X3, Xa) = P(X1)P(X2 | X1)P(X3 | X1, X2) P( Xy |
X17X27X3)

m Assuming that X3 1L Xj | X5 and Xy 1L X1, Xp | X3 results in
the expression from the previous slide:

P(X1, X2, X3, Xa) = P(X1)P(Xa2 | X1)P(X3 | X2)P(Xa | X3)



Chain Rule and Markov Models

m From the chain rule, every joint distribution over

X1, X2, ..., XT can be written as:
T

P(X1, Xz,..., X7) = P(X1) [] P(Xe | X1, X2, ..., Xe—1)
t=2

m Assuming that for all t:
Xt uin X17 s 7Xt—2 ‘ Xt—l
gives us the expression

T
P(X17X27 e >XT) = P(Xl) H P(Xt | Xt*]-)
t=2



Implied Conditional Independence

m We assumed: X3 AL X1 ’ X2 and X4 AL Xl,XQ ‘ X3
m Do we also have X7 1L X3, X5 | X5 ?

m Yes, proof:

P(Xl,XQ,X3,X4)
P(XQ,X3,X4)
_ PX)P(Xa | X1)P(X3 | X2) P(Xa | X3)
T X POa)P(Xa [ x1)P(X3 | X2)P(Xa | X3)
P(Xl,XQ)
P(X2)
= P(X1 | X2)

P(Xl | X2aX37X4) =




Markov Models Recap

m Explicit assumption for all t, X; 1L Xq,..., Xi—2 | Xe—1
m Consequence: the joint distribution can be written as:

;
P(X1, Xz, ..., X7) = P(X1) [] P(X¢ | Xe-1)
t=2

m Implied conditional independences: past variables independent
of future variables given the present

m Additional explicit assumption: P(X; | X¢—1) is the same for all
t



Stationary Distributions

m For most chains:
m Influence of the initial distribution gets less and less over time
m The distribution we end up in is independent of the initial
distribution
m Stationary Distribution:
m The distribution we end up with is called the stationary
distribution P, of the chain
m It satisfies

Poc(X) = Pocia(X) = 3 P(X | x)Pc(x)



Hidden Markov Models

m Markov chains not so useful for most agents

m Need observations to update your beliefs
m Hidden Markov Models (HMMs)

m Underlying Markov chain over states X

m Agent observes outputs (effects) at each time step
m A HMM is defined by:

m Initial distribution: P(X;)

m Transitions: P(X: | X¢—1)

m Emissions: P(E; | X;)



Joint Distribution of an HMM

m TODO figure

m Joint distribution:
P(X1, E1, X2, E2, X3, E3) = P(X1)P(Ex | X1)P(Ex | X2)P(X3 |
X2)P(Es | X3)

m More generally, $P(X1, E1,X2, E2,X3, E3) = P(Xl)P(El |
X)) T P(Xe | Xe-1)P(Ee | Xi)

m Questions to be resolved:

m Does this indeed define a joint distribution?

m Can every joint distribution be factored this way, or are we
making some assumptions about the joint distribution by using
this factorization?



Chain Rule and HMMs

m From the chain rule, every joint distribution over
X1, E1,..., X7, ET can be written as:

P(Xl El)"'aXT)ET):
P(X1)P(E1 | X1)

N
[IPXe | X1, B,y Xem1, B 1) P(Ee | Xu, Ex, ..o X1, Ee1, Xe)
=1

~



Chain Rule and HMMs

m Assuming that for all t:

m State independent of all past states and all past evidence given
the previous state

Xt uin Xl; Ela v 7Xt—27 Et—27 Et—l | Xt—l

m Evidence is independent of all past states and all past evidence
given the current state

Et uin Xl» Ela v 7Xt—27 Et—27Xt—17 Et—l | Xt

we get the expression

T
P(X17 E17X27 E27X37 E3) = P(Xl)P(El ‘ Xl) H P(Xt | thl)P(Et | -
t=2



Implied Conditional Independence

m Many implied conditional independences, for example
El uin X2a E2a X3, E3 ‘ Xl
m To prove them:

m Approach 1: follow similar (algebraic) approach to what we did
for Markov models

m Approach 2: directly from the graph structure



Real HMM Examples

m Speech recognition HMMs:
m Observations are acoustic signals (continuous valued)
m States are specific positions in specific words
m Machine translation HMMs:
m Observations are words (tens of thousands)
m States are translation options
m Robot tracking:
m Observations are range readings (continuous)
m States are positions on a map (continuous)



Filtering / Monitoring

m Filtering, or monitoring, is the task of tracking the distribution
Bi(X) = P:(X¢ | e1, ..., et) the belief state over time

m We start with B;(X) in an initial setting, usually uniform
m As time passes, or we get observations, we update B(X)

m The Kalman filter was invented in the 1960s and first
implemented as a method of trajectory estimation for the
Apollo program



Passage of Time

m Assume we have current belief P(X | evidence to date)
m The after one time step passes:

P(Xt+1 | el:t) = ZP(XH-LXt | el:t)

Xt

= ZP(XH—I ’ Xtel:t)P(Xt | el:t)

= Z P(Xix1 | xe)P(xt | ex:t)

Xt

or compactly:

B'(Xey1 = ZP (X" | x¢)B(xt)

m Basic idea: beliefs get “pushed” through the transitions



Observation

m Assume we have current belief P(X | previous evidence)
m Then after evidence comes in:

'D(Xt+1a €41 ’ el:t)
P(ety1 | er:t
Xy P(Xtt1, €t41 | €1:t)
= P(et+1 | el:t7Xt+1)P(Xt+1 | el:t)
= P(ett1 | Xey1)P(Xera | e1:e)

P(Xt+1 | el:t+1) =

or compactly:

B(Xe+1)xx, , Plee+1 | Xer1)B'(Xet1)

m Basic idea: beliefs get “reweighted” by likelihood of evidence



The Forward Algorithm

m We are given evidence at each time step and want to know
B(X) = P(X: | e1:t)

m We can derive the following updates

P(x¢ | e1:t) ocx P(x¢, e1:¢)

— Z P(Xf—17Xt7 el:t)

Xt—1

= Z P(xe-1, er:e—1) P(xe | xe—1)P(er | xe)

Xt—1

= P(et | xt) Z P(xt | xt—1)P(x¢—1, €1:t—1)

Xt—1



Online Belief Updates

m Every time step, we start with current P(X | evidence)

m We update for time:

P(x: | er:t—1) ZPXt 1] €epey)P(xe [ Xt-1)

Xt—1
m We update for evidence:
P(xt | e1:t) ocx P(xt | er:e—1)P(et | xt)

m The forward algorithm does both at once (and does not
normalize)



Particle Filtering

m Filtering: approximate solution
m Sometimes | X| is too big to use exact inference

m |X| may be too big to even store B(X)
m For example, X is continuous

m Solution: approximate inference

m Track samples of X, not all values

m Samples are called particles

m Time per step is linear in the number of samples
m But, the number needed may be large

m In memory: list of particles, not states

m Particle is just a new name for sample



Representation: Particles

m Our representation of P(X) is now a list of N particles
(samples)
m Generally, N < |N|
m Storing a map from X to counts would defeat the point
m P(X) approximated by number of particles with value x
m So, many x may have P(x) =0
m More particles, more accuracy
m For now, all particles have a weight of 1



Particle Filtering: Elapse Time

m Each particle is moved by sampling its next position from the
transition model

x" = sample(P(X’' | x))

m This is like prior sampling — samples’ frequencies reflect the
transition probabilities

m This captures the passage of time

m If enough samples, close to exact values before and after
(consistent)



Particle Filtering: Observe

m Slightly trickier
m Do not sample observation, fix it

m Similar to likelihood weighting, downweight samples based on
evidence

w(x) = P(e | x)
B(X) < P(e | X)B'(X)

m As before, the probabilities do not sum to one, since all have
been downweighted (in fact they now sum to (N times) an
approximation of $P(e))



Particle Filtering: Resample

m Rather than tracking weighted samples, we resample

m /N times, we choose from our weighted sample distribution
(that is, draw with replacement)

m This is equivalent to renormalizing the distribution

m Now the update is complete for this time step, continue with
the next one



Dynamic Bayes Nets (DBNs)

m We want to track multiple variables over time, using multiple
sources of evidence

m ldea: repeat a fixed Bayes net structure at each time
m Variables from time t can condition on those from t — 1

m Dynamic Bayes nets are a generalization of HMMs



DBN Particle Filters

A particle is a complete sample for a time step
Initialize: generate prior samples for the t = 1 Bayes net
m Example particle: G7 = (3,3)GP = (5,3)
Elapse time: sample a successor for each particle
m Example successor: G3 = (2,3)G? = (6,3)
Observe: weight each entire sample by the likelihood of the
evidence conditioned on the sample
m Likelihood: P(E? | G2)P(EP | GP)

Resample: select prior samples (tuples of values) in proportion
to their likelihood



