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Uncertainty

General situation:
Observed variables (evidence): agent knows certain things
about the state of the world

Unobserved variables: agent needs to reason about other
aspects

Model: agent knows something about how the known variables
relate to the unknown variables

Probabilistic reasoning gives us a framework for managing our
beliefs and knowledge



Random Variables

A random variable is some aspect of the world about which we
(may) have uncertainty

R = is it raining?
T = is it hot or cold?
D = How long will it take to drive to work?

We denote random variables with capital letters

Random variables have domains
R ∈ {true, false}
T ∈ {hot, cold}
D ∈ [0, ∞)



Probability Distributions

Associate a probability with each value

Example: temperature P(T )

T P
hot 0.5
cold 0.5

Example: weather P(W )

W P
sun 0.6
rain 0.1
fog 0.3



Probability Distributions

Unobserved random variables have distributions

A distribution is a table of probabilities of values

A probability is a single number

P(W = rain = 0.1

Must have:

∀xP(X = x) ≥ 0 and
∑

x P(X = x) = 1



Joint Distributions
A joint distribution over a set of random variables
X1, X2, . . . , Xn specifies a real number for each assignment (or
outcome):

P(X1 = x1, X2 = x2, . . . , Xn = xn)

P(x1, x2, . . . , xn)

Must obey

P(x1, x2, . . . , xn) ≥ 0

∑
(x1,x2,...,xn)

P(x1, x2, . . . , xn) = 1

Size of distribution of n variables with domain sizes d?
Only practical to write out small distributions



Joint Distribution

Example:

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3



Probabilistic Models

A probabilistic model is a joint distribution over a set of
random variables

Probabilistic models:
(Random) variables with domains
Assignments are called outcomes
Joint distributions: say whether assignments (outcomes) are
likely
Normalized: sum to 1.0
Ideally only certain variables directly interact

Constraint satisfaction problems:
Variables with domains
Constraints: state whether assignments are possible
Ideally only certain variables directly interact



Events

An event is a set E of outcomes

P(E ) =
∑

(x1,...,xn)∈E
P(x1, . . . , xn)

From a joint distribution we can calculate the probability of any
event

Typically, the events we care about are partial assignments, for
example P(T = hot)



Marginal Distributions

Marginal distributions are sub-tables which eliminate variables

Marginalization (summing out): combine collapsed rows by
adding

Example:
P(t) =

∑
s P(t, s) → P(T = hot) = 0.5, P(T = cold) = 0.5

P(w) =
∑

s P(t, s) → P(S = sun) = 0.6, P(S = rain) = 0.4

P(X1 = x1) =
∑

x2 P(X1 = x1, X2 = x2)



Conditional Probabilities

A simple relation between joint and conditional probabilities

Definition:

P(a | b) = P(a, b)
P(b)

Example:

P(W = s | T = c) = P(W = s, T = c)
P(T = c) = 0.2

0.5 = 0.4



Normalization

Select the joint probabilities matching the evidence

Normalize the selection

Example:

P(W = s | T = c) = P(W = s, T = c)
P(T = c)

= P(W = s, T = c)
P(W = s, T = c) + P(W = r , T = c)

= 0.2
0.2 + 0.3 = 0.4



Probabilistic Inference

Probabilistic inference: compute a desired probability from
other known probabilities (for example, from joint)

We generally compute conditional probabilities
These represent the agent’s beliefs given the evidence

Probabilities change with new evidence
Observing new evidence causes beliefs to be updated



Inference by Enumeration

General case:
Evidence variables: E1, . . . , Ek = e1, . . . , ek
Query variable: Q
Hidden variables: H1, . . . , Hr

We want: P(Q | e1, . . . , ek)

Steps:
1 Select the entries consistent with the evidence
2 Sum out H to get joint of Query and evidence
3 Normalize



Product Rule

Sometimes we have conditional distributions but want the joint

P(y)P(x | y) = P(x , y) ⇔ P(x | y) = P(x , y)
P(y)



The Chain Rule

More generally, we can always write any joint distribution as an
incremental product of conditional distributions

P(x1, x2, x3) = P(x1)P(x2 | x1)P(x3 | x1, x2)

General form:

P(x1, x2, . . . , xn) =
∏

i
P(xi | x1, . . . , xi−1)



Bayes’ Rule

Two ways to factor a joint distribution over two variables:

P(x , y) = P(x | y)P(y) = P(y | x)P(x)

Dividing, we get

P(x | y) = P(y | x)
P(y) P(x)

Why is this useful?
We can build one conditional from its reverse
Often one conditional is tricky but the other one is simple
Foundation of many systems



Inference with Bayes’ Rule

Example: diagnostic probability from causal probability

P(cause | effect) = P(effect | cause)P(cause)
P(effect)



Independence
Two variables are independent, denoted X ⊥⊥ Y , in a joint
distribution if:

P(X , Y ) = P(X )P(Y )

∀x , yP(x , y) = P(x)P(y)

Says the joint distribution factors into a product of two simple
ones
Usually variables are not independent

Can use independence as a modeling assumption
Independence can be a simplifying assumption
Empirical joint distributions: at best “close” to independent



Conditional Independence

Example: P(Toothache, Cavity, Catch)

If I have a cavity, the probability that the probe catches in it
does not depend on whether I have a toothache.

P(+catch | +toothache, +cavity) = P(+catch | +cavity)

The same independence holds if I do not have a cavity:
P(+catch | +toothache, −cavity) = P(+catch | −cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)



Conditional Independence

Unconditional (absolute) independence is rare

Conditional independence is our most basic robust form of
knowledge about uncertain environments.

X ⊥⊥ Y | Z : X is conditionally independent of Y given Z
If and only if:

∀x , y , z : P(x , y | z) = P(x | z)P(y | z)

or, equivalently, if and only if:

∀x , y , z : P(x | z , y) = P(x | z)



Reasoning over Time or Space

Often, we want to reason about a sequence of observations
Speech recognition
Robot localization
Medical monitoring

Need to introduce time (or space) into our models



Markov Models

Value of X at a given time is called the state
TODO figure

Parameters: called transition probabilities or dynamics, specify
how the state evolves over time (also, initial state probabilities)

Stationary assumption: transition probabilities the same at all
times

Same as MDP transition model, but no choice of action



Joint Distribution of a Markov Model
TODO figure

Joint distribution:

P(X1, X2, X3, X4) = P(X1)P(X2 | X1)P(X3 | X2)P(X4 | X3)

More generally:

P(X1, X2, . . . , Xn) = P(X1)P(X2 | X1)P(X3 | X2) . . . P(XT | XT−1)

= P(X1)
T∏

t=2
(P(Xt | Xt−1)

Questions to be resolved:
Does this indeed define a joint distribution?
Can every joint distribution be factored this way, or are we
making some assumptions about the joint distribution by using
this factorization?



Chain Rule and Markov Models

From the chain rule, every joint distribution over X1, X2, X3, X4
can be written as:

P(X1, X2, X3, X4) = P(X1)P(X2 | X1)P(X3 | X1, X2)P(X4 |
X1, X2, X3)

Assuming that X3 ⊥⊥ X1 | X2 and X4 ⊥⊥ X1, X2 | X3 results in
the expression from the previous slide:

P(X1, X2, X3, X4) = P(X1)P(X2 | X1)P(X3 | X2)P(X4 | X3)



Chain Rule and Markov Models

From the chain rule, every joint distribution over
X1, X2, . . . , XT can be written as:

P(X1, X2, . . . , XT ) = P(X1)
T∏

t=2
P(Xt | X1, X2, . . . , Xt−1)

Assuming that for all t:

Xt ⊥⊥ X1, . . . , Xt−2 | Xt−1

gives us the expression

P(X1, X2, . . . , XT ) = P(X1)
T∏

t=2
P(Xt | Xt−1)



Implied Conditional Independence
We assumed: X3 ⊥⊥ X1 | X2 and X4 ⊥⊥ X1, X2 | X3

Do we also have X1 ⊥⊥ X3, X4 | X2 ?

Yes, proof:

P(X1 | X2, X3, X4) = P(X1, X2, X3, X4)
P(X2, X3, X4)

= P(X1)P(X2 | X1)P(X3 | X2)P(X4 | X3)∑
x1 P(x1)P(X2 | x1)P(X3 | X2)P(X4 | X3)

= P(X1, X2)
P(X2)

= P(X1 | X2)



Markov Models Recap

Explicit assumption for all t, Xt ⊥⊥ X1, . . . , Xt−2 | Xt−1

Consequence: the joint distribution can be written as:

P(X1, X2, . . . , XT ) = P(X1)
T∏

t=2
P(Xt | Xt−1)

Implied conditional independences: past variables independent
of future variables given the present

Additional explicit assumption: P(Xt | Xt−1) is the same for all
t



Stationary Distributions

For most chains:
Influence of the initial distribution gets less and less over time
The distribution we end up in is independent of the initial
distribution

Stationary Distribution:
The distribution we end up with is called the stationary
distribution P∞ of the chain
It satisfies

P∞(X ) = P∞+1(X ) =
∑

x
P(X | x)P∞(x)



Hidden Markov Models

Markov chains not so useful for most agents
Need observations to update your beliefs

Hidden Markov Models (HMMs)
Underlying Markov chain over states X
Agent observes outputs (effects) at each time step

A HMM is defined by:
Initial distribution: P(X1)
Transitions: P(Xt | Xt−1)
Emissions: P(Et | Xt)



Joint Distribution of an HMM

TODO figure

Joint distribution:

P(X1, E1, X2, E2, X3, E3) = P(X1)P(E1 | X1)P(E2 | X2)P(X3 |
X2)P(E3 | X3)

More generally, $P(X1, E1, X2, E2, X3, E3) = P(X1)P(E1 |
X1)

∏T
t=2 P(Xt | Xt−1)P(Et | Xt)

Questions to be resolved:
Does this indeed define a joint distribution?
Can every joint distribution be factored this way, or are we
making some assumptions about the joint distribution by using
this factorization?



Chain Rule and HMMs

From the chain rule, every joint distribution over
X1, E1, . . . , XT , ET can be written as:

P(X1, E1, . . . , XT , ET ) =
P(X1)P(E1 | X1)

T∏
t=1

P(Xt | X1, E1, . . . , Xt−1, Et−1)P(Et | X1, E1, . . . , Xx−1, Et−1, Xt)



Chain Rule and HMMs
Assuming that for all t:

State independent of all past states and all past evidence given
the previous state

Xt ⊥⊥ X1, E1, . . . , Xt−2, Et−2, Et−1 | Xt−1

Evidence is independent of all past states and all past evidence
given the current state

Et ⊥⊥ X1, E1, . . . , Xt−2, Et−2, Xt−1, Et−1 | Xt

we get the expression

P(X1, E1, X2, E2, X3, E3) = P(X1)P(E1 | X1)
T∏

t=2
P(Xt | Xt−1)P(Et | Xt)



Implied Conditional Independence

Many implied conditional independences, for example

E1 ⊥⊥ X2, E2, X3, E3 | X1

To prove them:
Approach 1: follow similar (algebraic) approach to what we did
for Markov models

Approach 2: directly from the graph structure



Real HMM Examples

Speech recognition HMMs:
Observations are acoustic signals (continuous valued)
States are specific positions in specific words

Machine translation HMMs:
Observations are words (tens of thousands)
States are translation options

Robot tracking:
Observations are range readings (continuous)
States are positions on a map (continuous)



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution
Bt(X ) = Pt(Xt | e1, . . . , et) the belief state over time

We start with B1(X ) in an initial setting, usually uniform

As time passes, or we get observations, we update B(X )

The Kalman filter was invented in the 1960s and first
implemented as a method of trajectory estimation for the
Apollo program



Passage of Time

Assume we have current belief P(X | evidence to date)
The after one time step passes:

P(Xt+1 | e1:t) =
∑
xt

P(Xt+1, xt | e1:t)

=
∑
xt

P(Xt+1 | xte1:t)P(xt | e1:t)

=
∑
xt

P(Xt+1 | xt)P(xt | e1:t)

or compactly:

B′(Xt+1 =
∑
xt

P(X ′ | xt)B(xt)

Basic idea: beliefs get “pushed” through the transitions



Observation
Assume we have current belief P(X | previous evidence)
Then after evidence comes in:

P(Xt+1 | e1:t+1) = P(Xt+1, et+1 | e1:t)
P(et+1 | e1:t

∝Xt+1 P(Xt+1, et+1 | e1:t)
= P(et+1 | e1:t , Xt+1)P(Xt+1 | e1:t)
= P(et+1 | Xt+1)P(Xt+1 | e1:t)

or compactly:

B(Xt+1)∝Xt+1
P(et+1 | Xt+1)B′(Xt+1)

Basic idea: beliefs get “reweighted” by likelihood of evidence



The Forward Algorithm
We are given evidence at each time step and want to know

Bt(X ) = P(Xt | e1:t)

We can derive the following updates

P(xt | e1:t) ∝X P(xt , e1:t)
=

∑
xt−1

P(xt−1, xt , e1:t)

=
∑
xt−1

P(xt−1, e1:t−1)P(xt | xt−1)P(et | xt)

= P(et | xt)
∑
xt−1

P(xt | xt−1)P(xt−1, e1:t−1)



Online Belief Updates

Every time step, we start with current P(X | evidence)

We update for time:

P(xt | e1:t−1) =
∑
xt−1

P(xt−1 | ee1:t−1)P(xt | xt−1)

We update for evidence:

P(xt | e1:t) ∝X P(xt | e1:t−1)P(et | xt)

The forward algorithm does both at once (and does not
normalize)



Particle Filtering

Filtering: approximate solution

Sometimes |X | is too big to use exact inference
|X | may be too big to even store B(X )
For example, X is continuous

Solution: approximate inference
Track samples of X , not all values
Samples are called particles
Time per step is linear in the number of samples
But, the number needed may be large
In memory: list of particles, not states

Particle is just a new name for sample



Representation: Particles

Our representation of P(X ) is now a list of N particles
(samples)

Generally, N ≪ |N|
Storing a map from X to counts would defeat the point

P(X ) approximated by number of particles with value x
So, many x may have P(x) = 0
More particles, more accuracy

For now, all particles have a weight of 1



Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the
transition model

x ′ = sample(P(X ′ | x))
This is like prior sampling – samples’ frequencies reflect the
transition probabilities

This captures the passage of time
If enough samples, close to exact values before and after
(consistent)



Particle Filtering: Observe

Slightly trickier
Do not sample observation, fix it

Similar to likelihood weighting, downweight samples based on
evidence

w(x) = P(e | x)

B(X ) ∝ P(e | X )B′(X )

As before, the probabilities do not sum to one, since all have
been downweighted (in fact they now sum to (N times) an
approximation of $P(e))



Particle Filtering: Resample

Rather than tracking weighted samples, we resample

N times, we choose from our weighted sample distribution
(that is, draw with replacement)

This is equivalent to renormalizing the distribution

Now the update is complete for this time step, continue with
the next one



Dynamic Bayes Nets (DBNs)

We want to track multiple variables over time, using multiple
sources of evidence

Idea: repeat a fixed Bayes net structure at each time

Variables from time t can condition on those from t − 1

Dynamic Bayes nets are a generalization of HMMs



DBN Particle Filters

A particle is a complete sample for a time step

Initialize: generate prior samples for the t = 1 Bayes net
Example particle: Ga

1 = (3, 3)Gb
1 = (5, 3)

Elapse time: sample a successor for each particle
Example successor: Ga

2 = (2, 3)Gb
2 = (6, 3)

Observe: weight each entire sample by the likelihood of the
evidence conditioned on the sample

Likelihood: P(E a
1 | Ga

1 )P(E b
1 | Gb

1 )

Resample: select prior samples (tuples of values) in proportion
to their likelihood


