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Preferences
An agent chooses among prizes (A, B, etc.) and lotteries
(situations with uncertain prizes).

Preference Notation:

A ≻ B A preferred to B
A ∽ B indifference between A and B
A ≿ B B not preferred to A

Lottery notation: L = [p, A; (1− p), B]



Rational Preferences
Idea: preferences of a rational agent must obey constraints

Rational preferences ⇒ behavior describable as maximization
of expected utility.

Constraints:
Orderability:
(A ≻ B) ∨ (B ≻ A) ∨ (A ∽ B)

Transitivity:
(A ≻ B) ∧ (B ≻ C)→ (A ≻ C)

Continuity:
A ≻ B ≻ C → ∃p[p, A; 1− p, C ] ∽ B

Substitutability:
A ∽ B → [p, A; 1− p, C ] ∽ [p, B; 1− p, C ]

Monotonicity:
A ≻ B → (p ≥ q ↔ [p, A; 1− p, B] ≿ [q, A; 1− q, B])



Rational Preferences
Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be
induced to give away all its money

If B ≻ C , then an agent who has C would pay (say) 1 cent to
get B

If A ≻ B, then an agent who has B would pay (say) 1 cent to
get A

If C ≻ A, then an agent who has A would pay (say) 1 cent to
get C



Maximizing Expected Utility

Theorem (Ramsey, 1931; von Neumann and Morgenstern
1944): Given preferences satisfying the constraints there exists
a real-valued function U such that

U(A) ≥ U(B)↔ A ≿ B
U([p1, S1; . . . ; pn, Sn]) =

∑
i

piU(Si)

Maximum Expected Utility (MEU) principle: choose the action
that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing of manipulating utilities and
probabilities



Utilities

Utilities map states to real numbers

Standard approach to assessment of human utilities:
compare a given state A to a standard lottery Lp that has “best
possible prize” u⊤ with probability p and “worst possible
catastrophe” u⊥ with probability (1− p)

adjust lottery probability p until A ∽ Lp



Utility Scales

Normalized utilities: u⊤ = 1.0, u⊥ = 0.0

Micromorts: one-millionth chance of death
useful for Russian roulette, paying to reduce risks, etc.

QALYs: quality-adjusted life years
useful for medical decisions involving substantial risk

Note: behavior is invariant with respect to +ve linear
transformation

U ′(x) = k1U(x) + k2 where k1 > 0

With deterministic prizes only (no lottery choices), only ordinal
utility can be determined, that is, total order on prizes



Money
Money does not behave as a utility function

Given a lottery L with expected monetary value EMV (L),
usually U(L) < U(EMV (L)), that is, people are risk-averse

Utility curve: for what probability p am I indifferent between
prize x and a lottery [p, $M; (1− p), $0] for large M?

Typical empirical data, extrapolated with risk-prone behavior:



Decision Networks
Add action nodes and utility nodes to belief networks to enable
rational decision making

Algorithm:
For each value of action node, compute expected value of utility
node given action, evidence

Return MEU action



Multiattribute Utility

How can we handle utility functions of many variable X1 . . . Xn?

For example, what is U(Deaths, Noise, Cost)

How can complex utility functions be assessed from preference
behavior?

Idea 1: identify conditions under which decisions can be made
without complete identification of U(x1, . . . , xn)

Idea 2: identify various types of independence in preferences
and derive consequent canonical forms for U(x1, . . . , xn)



Strict Dominance

Typically define attributes such that U is monotonic in each

Strict dominance: choice B strictly dominates choice A iff
∀i Xi(B) ≥ Xi(A) (and hence U(B) ≥ U(A))

Strict dominance seldom holds in practice



Stochastic Dominance

Distribution p1 stochastically dominates distribution p2 iff

∀ t
∫ t

−∞
p(x)dx ≤

∫ t

−∞
p2(x)d(x)

If U is monotonic in x , then A1 with outcome distribution p1
stochastically dominates A2 with outcome distribution p2:∫ ∞

−∞
p1(x)U(x)d(x) ≥

∫ ∞

−∞
p2(x)U(x)dx

Multiattribute case: stochastic dominance on all attributes ⇒
optimal



Stochastic Dominance

Stochastic dominance can often be determined without exact
distributions using qualitative reasoning

For example, construction cost increases with distance from
city: S1 is closer to the city than S2 → S1 stochastically
dominates S2 on cost

For example, injury increases with collision speed

Can annotate belief networks with stochastic dominance
information: X +→ Y (X positively influences Y ) means that
for every value z of Y ’s other parents Z
∀ x1, x2 ≥ x2 → P(Y | x1, z) stochastically dominates
P(Y | x2, z)



Preference Structure: Deterministic
X1 and X2 preferentially independent (P.I.) of X3 iff preference
between ⟨x1, x2, x3⟩ and ⟨x ′

1, x ′
2, x ′

3⟩ does not depend on x3

For example, ⟨Noise, Cost, Safety⟩:
⟨ 20,000 suffer, $4.6 billion, 0.06 deaths/mpm ⟩ versus
⟨ 70,000 suffer, $4.2 billion, 0.06 deaths/mpm ⟩

Theorem (Leontief, 1947): if every pair of attributes is P.I. of
its complement, then every subset of attributes is P.I. of its
complement: mutual P.I.

Theorem (Debreu, 1960): mutual P.I. → ∃ additive value
function:

V (S) =
∑

i
Vi(Xi(S))

Hence assess n single-attribute functions; often a good
approximation



Preference Structure: Stochastic

Need to consider preferences over lotteries: X is
utility-independent of Y iff preferences over lotteries in X do
not depend on y

Mutual P.I.: each subset is U.I. of its complement → ∃
multiplicative utility function:

U = k1U1 + k2U2 + k3U3

+ k1k2U1U2 + k2k3U2U3 + k3k1U3U1

+ k1k2k3U1U2U3

Routine procedures and software packages for generating
preference tests to identify various canonical families of utility
functions



Value of Information
Idea: compute value of acquiring each possible piece of
evidence; can be done directly from the decision network

Example: buying oil drilling rights
two blocks A and B, exactly one has oil, worth k

prior probabilities 0.5 each, mutually exclusive

current price of each block k/2

“consultant” offers accurate survey of A – fair price?

Solution: compute the expected value of information –
expected value of the best action given the information minus
expected value of best action without information

Survey may say “oil in A” or “no oil in A”
= [0.5× value of “buy A” given “oil in A +
0.5× value of”buy B” given “no oil in A” ] - 0
= (0.5× k/2) + (0.5× k/2)− 0 = k/2



General Formula
Current evidence E , current best action α, possible action
outcomes Si , potential new evidence Ej

EU(α | E ) = max
a

∑
i

U(Si)P(Si | E , a)

Suppose we knew Ej = ejk , then we would choose αejk s.t.

EU(αejk | E , Ej = ejk) = max
a

∑
i

U(Si)P(Si | E , a, Ej = ejk)

Ej is a random variable whose value is currently unknown ⇒
must compute expected gain over all possible values:

VPIE (Ej) = (
∑

k
P(Ej = ejk | E )EU(αejk | E , Ej = ejk))−EU(α | E )

(VPI = value of perfect information)



Properties of VPI

Nonnegative (in expectation)
∀j , E VPIE (Ej) ≥ 0

Nonadditive (consider obtaining Ej twice)
VPIE (Ej , Ek) ̸= VPIE (Ej) + VPIE (Ek)

Order-independent
VPIE (Ej , Ek) = VPIE (Ej) + VPIE ,Ej (Ek) =
VPIE (Ek) + VPIE ,Ek (Ej)

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal ⇒
evidence-gathering becomes a sequential decision problem



Qualitative Behaviors

a: choice is obvious, information worth little

b: choice is nonobvious, information worth a lot

c: choice is nonobvious, information worth little



Sequential Decision Problems



Example Markov Decision Process (MDP)

States s ∈ S, actions a ∈ A

Model: T (s, a, s ′) ≡ P(s ′ | s, a) = probability that a in s leads
to s ′

Reward function:

R(a) =
{
−0.04 (small penalty) for nonterminal states
±1 for terminal states



Solving Markov Decision Processes
In search problems, aim is to find an optimal sequence

In MDPs, aim is to find optimal policy π(s): best action for
every possible state s (because we cannot predict where one
will end up)

The optimal policy maximizes (say) the expected sum of
rewards

Optimal policy when state penalty R(s) is −0.04:



Risk and Reward



Utility of State Sequences
Need to understand preferences between sequences of states

Typically consider stationary preferences on reward sequences:

[r , r0, r1, r2, . . .] ≻ [r , r ′
0, r ′

1, r ′
2, . . .]↔ [r0, r1, r2, . . .] ≻ [r ′

0, r ′
1, r ′

2, . . .]

Theorem: there are only two ways to combine rewards over
time:

1 Additive utility function:

U([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + . . .

2 Discounted utility function:

U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + . . .

where γ is the discount factor.



Utility of States
Utility of a state (a.k.a. its value) is defined to be U(s) =
expected (discounted) sum of rewards (until termination)
assuming optimal actions

Given the utilities of the states, choosing the best action is just
MEU: maximize the expected utility of the immediate
successors



Utilities
Problem: infinite lifetimes ⇒ additive utilities are infinite

1 Finite Horizon: termination at a fixed time T ⇒ nonstationary
policy: π(s) depends on time left

2 Absorbing state(s): with probability 1, agent eventually “dies”
for any pi ⇒ expected utility of every state is finite

3 Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, . . . , s∞]) =
∞∑

t=0
γtR(st) ≤ Rmax/(1− γ)

smaller γ ⇒ shorter horizon

4 Maximize system gain = average reward per time step:
Theorem: optimal policy has constant gain after intial transient



Dynamic Programming: the Bellman
Equation

Definition of utility of states leads to a simple relationship
among utilities of neighboring states: expected sum of rewards
= current reward + γ× expected sum of rewards after taking
best action

Bellman equation (1957):
U(s) = R(s) + γ max

a

∑
s′

U(s ′)T (s, a, s ′)

Example:
U(1, 1) = −0.04 + γ max(

0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1),
0.9U(1, 1) + 0.1U(1, 2),
0.9U(1, 1) + 0.1U(2, 1),
0.8U(2, 1) + 0.1U(1, 2), 0.1U(1, 1)
)

One equation per state = n nonlinear equations in n unknowns.



Value Iteration Algorithm
Idea: start with arbitrary utility values
Update to make them locally consistent with Bellman equation
Everywhere locally consistent ⇒ global optimality

Repeat for every s simultaneously until “no change”
U(s)← R(s) + γ max

a

∑
s′

U(s ′)T (s, a, s ′) ∀ s



Convergence
Define the max-norm ∥U∥ = maxs |U(s)|, so ∥U − V ∥ =
maximum difference between U and V

Let Ut and Ut+1 be successive approximations to the true
utility

Theorem: for any two approximations Ut and V t

∥Ut+1 − V t+1∥ ≤ ∥Ut − V t∥

That is, any distinct approximations must get closer to each
other so, inparticular, any approximation must get closer to the
true U and value iteration converges to a unique, stable
optimal solution

Theorem: if ∥Ut+1 − Ut∥ < ϵ, then ∥Ut+1 − U∥ < 2ϵγ
1−γ That

is, once the change in Ut becomes small, we are almost done

MEU policy using Ut may be optimal long before convergence
of values



Policy Iteration

Howard, 1960: search for optimal policy and utility values
simultaneously

To compute utilities given a fixed π (value determination):

U(s) = R(s) + γ
∑
s′

U(s ′)T (s, π(s), s ′) ∀s

That is, n simultaneous linear equations in n unknowns, solve
in O(n3)



Modified Policy Iteration
Policy iteration often converges in few iterations, but each is
expensive

Idea: use a few steps of value iteration (but with π fixed)
starting from the value function produced the last time to
produce an approximate value determination step

Often converges much faster than pure value iteration or policy
iteration

Leads to much more general algorithms where Bellman value
updates and Howard policy updates can be performed locally in
any order

Reinforcement learning algorithms operate by performing such
updates based on the observed transitions made in an initially
unknown environment



Partial Observability

A Partially Observable Markov Decision Process (POMP) has
an observation model O(s, e) defining the probability that the
agent obtains evidence e when in state s

Agent does not know which state it is in ⇒ makes no sense to
talk about policy π

Theorem (Astrom 1965): the optimal policy in a POMPD is a
function π(b) where b is the belief state (probability
distribution over states)

Can convert a POMPD into an MDP in belief-state space,
where T (b, a, b′) is the probability that the new belief state is
b′ given that the current belief state is b and the agent does a



Partial Observability

Solutions automatically include information-gathering behavior

If there are n states, b is an n-dimensional real-valued vector
⇒ solving POMPDs is very (actually, PSPACE) hard

The real world is a POMDP (with initially unknown T and O


