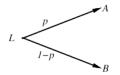
Rational Decisions CSC 548, Artificial Intelligence II

Preferences

- An agent chooses among *prizes* (*A*, *B*, etc.) and *lotteries* (situations with uncertain prizes).
- Preference Notation:
 - $A \succ B$ A preferred to B $A \backsim B$ indifference between A and B $A \succeq B$ B not preferred to A

• Lottery notation: L = [p, A; (1 - p), B]

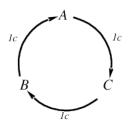


Rational Preferences

- Idea: preferences of a rational agent must obey constraints
- Rational preferences ⇒ behavior describable as maximization of expected utility.
- Constraints:
 - Orderability: $(A \succ B) \lor (B \succ A) \lor (A \backsim B)$
 - Transitivity: $(A \succ B) \land (B \succ C) \rightarrow (A \succ C)$
 - Continuity: $A \succ B \succ C \rightarrow \exists p[p, A; 1-p, C] \backsim B$
 - Substitutability: $A \sim B \rightarrow [p, A; 1 - p, C] \sim [p, B; 1 - p, C]$
 - Monotonicity: $A \succ B \rightarrow (p \ge q \leftrightarrow [p, A; 1 - p, B] \succeq [q, A; 1 - q, B])$

Rational Preferences

- Violating the constraints leads to self-evident irrationality
- For example: an agent with intransitive preferences can be induced to give away all its money
 - If $B \succ C$, then an agent who has C would pay (say) 1 cent to get B
 - If $A \succ B$, then an agent who has B would pay (say) 1 cent to get A
 - If C ≻ A, then an agent who has A would pay (say) 1 cent to get C



Maximizing Expected Utility

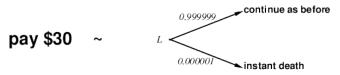
 Theorem (Ramsey, 1931; von Neumann and Morgenstern 1944): Given preferences satisfying the constraints there exists a real-valued function U such that

$$U(A) \ge U(B) \leftrightarrow A \succeq B$$
$$U([p_1, S_1; \dots; p_n, S_n]) = \sum_i p_i U(S_i)$$

- Maximum Expected Utility (MEU) principle: choose the action that maximizes expected utility
- Note: an agent can be entirely rational (consistent with MEU) without ever representing of manipulating utilities and probabilities

Utilities

- Utilities map states to real numbers
- Standard approach to assessment of human utilities:
 - compare a given state A to a standard lottery L_p that has "best possible prize" u_⊤ with probability p and "worst possible catastrophe" u_⊥ with probability (1 − p)
 - adjust lottery probability p until $A \sim L_p$



Utility Scales

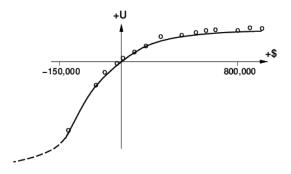
- Normalized utilities: $u_{\top} = 1.0, u_{\perp} = 0.0$
- Micromorts: one-millionth chance of death useful for Russian roulette, paying to reduce risks, etc.
- QALYs: quality-adjusted life years useful for medical decisions involving substantial risk
- Note: behavior is invariant with respect to +ve linear transformation

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

 With deterministic prizes only (no lottery choices), only ordinal utility can be determined, that is, total order on prizes

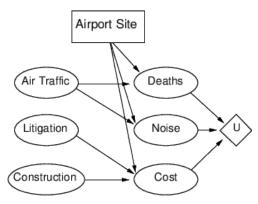
Money

- Money does not behave as a utility function
- Given a lottery *L* with expected monetary value *EMV*(*L*), usually *U*(*L*) < *U*(*EMV*(*L*)), that is, people are risk-averse
- Utility curve: for what probability p am I indifferent between prize x and a lottery [p, \$M; (1 − p), \$0] for large M?
- Typical empirical data, extrapolated with risk-prone behavior:



Decision Networks

 Add action nodes and utility nodes to belief networks to enable rational decision making



Algorithm:

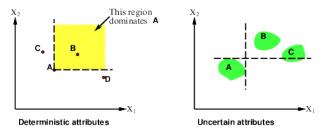
 For each value of action node, compute expected value of utility node given action, evidence

Multiattribute Utility

- How can we handle utility functions of many variable $X_1 \dots X_n$?
- For example, what is *U*(*Deaths*, *Noise*, *Cost*)
- How can complex utility functions be assessed from preference behavior?
- Idea 1: identify conditions under which decisions can be made without complete identification of *U*(*x*₁,...,*x*_n)
- Idea 2: identify various types of independence in preferences and derive consequent canonical forms for *U*(*x*₁,...,*x*_n)

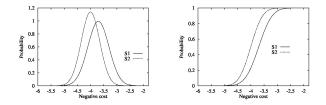
Strict Dominance

- Typically define attributes such that U is monotonic in each
- Strict dominance: choice *B* strictly dominates choice *A* iff $\forall i \ X_i(B) \ge X_i(A)$ (and hence $U(B) \ge U(A)$)



Strict dominance seldom holds in practice

Stochastic Dominance



■ Distribution p_1 stochastically dominates distribution p_2 iff $\forall t \int_{-\infty}^t p(x) dx \leq \int_{-\infty}^t p_2(x) d(x)$

If U is monotonic in x, then A₁ with outcome distribution p₁ stochastically dominates A₂ with outcome distribution p₂:

$$\int_{-\infty}^{\infty} p_1(x) U(x) d(x) \geq \int_{-\infty}^{\infty} p_2(x) U(x) dx$$

■ Multiattribute case: stochastic dominance on all attributes ⇒ optimal

Stochastic Dominance

- Stochastic dominance can often be determined without exact distributions using qualitative reasoning
- For example, construction cost increases with distance from city: S_1 is closer to the city than $S_2 \rightarrow S_1$ stochastically dominates S_2 on cost
- For example, injury increases with collision speed
- Can annotate belief networks with stochastic dominance information: X ⁺→ Y (X positively influences Y) means that for every value z of Y's other parents Z
 ∀ x₁, x₂ ≥ x₂ → P(Y | x₁, z) stochastically dominates P(Y | x₂, z)

Preference Structure: Deterministic

- X₁ and X₂ preferentially independent (P.I.) of X₃ iff preference between ⟨x₁, x₂, x₃⟩ and ⟨x'₁, x'₂, x'₃⟩ does not depend on x₃
- For example, (*Noise*, *Cost*, *Safety*): (20,000 suffer, \$4.6 billion, 0.06 deaths/mpm) versus (70,000 suffer, \$4.2 billion, 0.06 deaths/mpm)
- Theorem (Leontief, 1947): if every pair of attributes is P.I. of its complement, then every subset of attributes is P.I. of its complement: mutual P.I.
- Theorem (Debreu, 1960): mutual P.I. $\rightarrow \exists$ additive value function:

$$V(S) = \sum_{i} V_i(X_i(S))$$

Hence assess n single-attribute functions; often a good approximation

Preference Structure: Stochastic

- Need to consider preferences over lotteries: X is utility-independent of Y iff preferences over lotteries in X do not depend on y
- Mutual P.I.: each subset is U.I. of its complement → ∃ multiplicative utility function:

 $U = k_1 U_1 + k_2 U_2 + k_3 U_3$ + $k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1$ + $k_1 k_2 k_3 U_1 U_2 U_3$

 Routine procedures and software packages for generating preference tests to identify various canonical families of utility functions

Value of Information

- Idea: compute value of acquiring each possible piece of evidence; can be done directly from the decision network
- Example: buying oil drilling rights
 - two blocks A and B, exactly one has oil, worth k
 - prior probabilities 0.5 each, mutually exclusive
 - current price of each block k/2
 - "consultant" offers accurate survey of A fair price?
- Solution: compute the expected value of information expected value of the best action given the information minus expected value of best action without information

General Formula

Current evidence *E*, current best action *α*, possible action outcomes *S_i*, potential new evidence *E_j*

$$EU(\alpha \mid E) = \max_{a} \sum_{i} U(S_i) P(S_i \mid E, a)$$

• Suppose we knew $E_j = e_{jk}$, then we would choose $\alpha_{e_{jk}}$ s.t.

$$EU(\alpha_{e_{jk}} \mid E, E_j = e_{jk}) = \max_{a} \sum_{i} U(S_i) P(S_i \mid E, a, E_j = e_{jk})$$

■ *E_j* is a random variable whose value is *currently* unknown ⇒ must compute expected gain over all possible values:

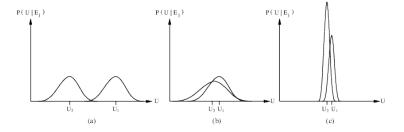
$$VPI_{E}(E_{j}) = \left(\sum_{k} P(E_{j} = e_{jk} \mid E) EU(\alpha_{e_{jk}} \mid E, E_{j} = e_{jk})\right) - EU(\alpha \mid E)$$

(VPI = value of perfect information)

Properties of VPI

- Nonnegative (in expectation)
 ∀*j*, *E* VPI_E(*E_j*) ≥ 0
- Nonadditive (consider obtaining E_j twice) VPI_E(E_j, E_k) ≠ VPI_E(E_j) + VPI_E(E_k)
- Order-independent $VPI_E(E_j, E_k) = VPI_E(E_j) + VPI_{E,E_j}(E_k) = VPI_E(E_k) + VPI_{E,E_k}(E_j)$
- Note: when more than one piece of evidence can be gathered, maximizing VPI for each to select one is not always optimal ⇒ evidence-gathering becomes a sequential decision problem

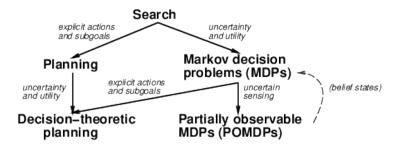
Qualitative Behaviors



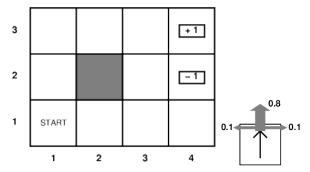
■ a: choice is obvious, information worth little

- b: choice is nonobvious, information worth a lot
- c: choice is nonobvious, information worth little

Sequential Decision Problems



Example Markov Decision Process (MDP)



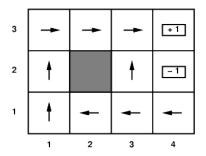
• States $s \in S$, actions $a \in A$

- Model: T(s, a, s') ≡ P(s' | s, a) = probability that a in s leads to s'
- Reward function:

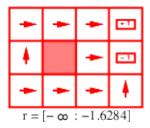
 $R(a) = \begin{cases} -0.04 & \text{(small penalty) for nonterminal states} \\ \pm 1 & \text{for terminal states} \end{cases}$

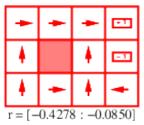
Solving Markov Decision Processes

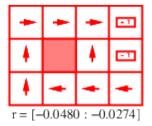
- In search problems, aim is to find an optimal sequence
- In MDPs, aim is to find optimal policy π(s): best action for every possible state s (because we cannot predict where one will end up)
- The optimal policy maximizes (say) the *expected sum of* rewards
- Optimal policy when state penalty R(s) is -0.04:

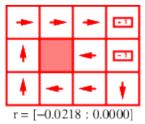


Risk and Reward









Utility of State Sequences

- Need to understand preferences between *sequences* of states
- Typically consider stationary preferences on reward sequences:

 $[r, r_0, r_1, r_2, \ldots] \succ [r, r_0', r_1', r_2', \ldots] \leftrightarrow [r_0, r_1, r_2, \ldots] \succ [r_0', r_1', r_2', \ldots]$

- Theorem: there are only two ways to combine rewards over time:
 - **1** Additive utility function:

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + R(s_1) + R(s_2) + \ldots$$

$$U([s_0, s_1, s_2, \ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$$

where γ is the discount factor.

Utility of States

- Utility of a state (a.k.a. its value) is defined to be U(s) = expected (discounted) sum of rewards (until termination) assuming optimal actions
- Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of the immediate successors

3	0.812	0.868	0.912	+1	3	+	+	+	+1
2	0.762		0.660	-1	2	ŧ		ŧ	-1
1	0.705	0.655	0.611	0.388	1	ŧ	Ŧ	ł	-
'	1	2	3	4		1	2	3	4

Utilities

- Problem: infinite lifetimes ⇒ additive utilities are infinite
- **I** Finite Horizon: termination at a *fixed time* $T \Rightarrow$ nonstationary policy: $\pi(s)$ depends on time left
- Absorbing state(s): with probability 1, agent eventually "dies" for any *pi* ⇒ expected utility of every state is finite
- 3 Discounting: assuming $\gamma < 1, R(s) \leq R_{\max}$,

$$U([s_0,\ldots,s_\infty]) = \sum_{t=0}^{\infty} \gamma^t R(s_t) \le R_{\max}/(1-\gamma)$$

smaller $\gamma \Rightarrow$ shorter horizon

 Maximize system gain = average reward per time step: Theorem: optimal policy has constant gain after intial transient

Dynamic Programming: the Bellman Equation

- Definition of utility of states leads to a simple relationship among utilities of neighboring states: expected sum of rewards
 = current reward + \(\gamma \times \expected sum of rewards after taking best action \expected sum of rewards after taking best action \expected sum of rewards after taking best action
- Bellman equation (1957):

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} U(s')T(s, a, s')$$

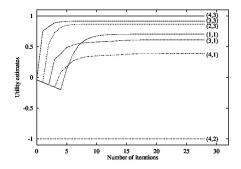
Example:

$$egin{aligned} & U(1,1) = -0.04 + \gamma \max(\ & 0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1),\ & 0.9U(1,1) + 0.1U(1,2),\ & 0.9U(1,1) + 0.1U(2,1),\ & 0.8U(2,1) + 0.1U(1,2), 0.1U(1,1) \end{aligned}$$

Value Iteration Algorithm

- Idea: start with arbitrary utility values
 Update to make them *locally consistent* with Bellman equation
 Everywhere locally consistent ⇒ global optimality
- Repeat for every s simultaneously until "no change"

$$U(s) \leftarrow R(s) + \gamma \max_{a} \sum_{s'} U(s') T(s, a, s') \quad \forall \ s$$



Convergence

- Define the max-norm $||U|| = \max_s |U(s)|$, so $||U V|| = \max$ imum difference between U and V
- Let *U^t* and *U^{t+1}* be successive approximations to the true utility
- Theorem: for any two approximations U^t and V^t

$$\|U^{t+1} - V^{t+1}\| \le \|U^t - V^t\|$$

That is, any distinct approximations must get closer to each other so, inparticular, any approximation must get closer to the true U and value iteration converges to a unique, stable optimal solution

- Theorem: if $||U^{t+1} U^t|| < \epsilon$, then $||U^{t+1} U|| < \frac{2\epsilon\gamma}{1-\gamma}$ That is, once the change in U^t becomes small, we are almost done
- MEU policy using U^t may be optimal long before convergence of values

Policy Iteration

- Howard, 1960: search for optimal policy and utility values simultaneously
- To compute utilities given a fixed π (value determination):

$$U(s) = R(s) + \gamma \sum_{s'} U(s')T(s,\pi(s),s') \quad \forall s$$

That is, *n* simultaneous linear equations in *n* unknowns, solve in $\mathcal{O}(n^3)$

Modified Policy Iteration

- Policy iteration often converges in few iterations, but each is expensive
- Idea: use a few steps of value iteration (but with π fixed) starting from the value function produced the last time to produce an approximate value determination step
- Often converges much faster than pure value iteration or policy iteration
- Leads to much more general algorithms where Bellman value updates and Howard policy updates can be performed locally in any order
- Reinforcement learning algorithms operate by performing such updates based on the observed transitions made in an initially unknown environment

Partial Observability

- A Partially Observable Markov Decision Process (POMP) has an *observation model* O(s, e) defining the probability that the agent obtains evidence e when in state s
- \blacksquare Agent does not know which state it is in \Rightarrow makes no sense to talk about policy π
- Theorem (Astrom 1965): the optimal policy in a POMPD is a function π(b) where b is the *belief state* (probability distribution over states)
- Can convert a POMPD into an MDP in belief-state space, where T(b, a, b') is the probability that the new belief state is b' given that the current belief state is b and the agent does a

Partial Observability

- Solutions automatically include information-gathering behavior
- If there are *n* states, *b* is an *n*-dimensional real-valued vector ⇒ solving POMPDs is very (actually, PSPACE) hard
- The real world is a POMDP (with initially unknown T and O