
Markov Decision Processes
CSC 548, Artificial Intelligence II

Example: Grid World

A maze-like problem
The agent lives in a grid
Walls block the agent’s path

Noisy movement: actions to not always go as planned
80% of the time the action North takes the agent North (if
there is no wall there)
10% of the time, North takes the agent West; 10% East
If there is a wall in the direction the would have been takes, the
agent does not move

The agent receives rewards each time step
Small “living” reward each step (can be negative)
Big rewards come at the end (good or bad)

Goal: maximize rewards

Grid World Actions

Markov Decision Processes

A Markov Decision Process (MDP) is defined by:
A set of states s ∈ S
A set of actions a ∈ A
A transition function T (s, a, s ′)

Probability that a from s leads to s ′, that is, P(s ′ | s, a)
Also called the model or the dynamics

A reward function R(s, a, s ′)
Sometimes just R(s) or R(s ′)

A start state
Maybe a terminal state

MDPs are non-deterministic search problems
One way to solve them is with expectimax search

The Markov Assumption

“Markov” generally means that given the present state, the
future and past are independent

For MDPs, “Markov” means action outcomes depend only on
the current state

P(St+1 = s ′ | St = st , At = at , St−1 = st−1, . . . , S0 = s0)
=
P(St+1 = s ′ | St = st , At = at)

This is just like search where the successor function could only
depend on the current state (not the history)

Policies

In deterministic single-agent search problems, we want an
optimal plan, or sequence of actions from start to goal.

For MDPs, we want an optimal policy π∗ : S → A
A policy π gives an action for each state
An optimal policy is one that maximizes expected utility if
followed
An explicit policy defines a reflex agent

Expectimax did not compute entire policies
It computed the action for a single state only

Example: Grid World Policy

Optimal policy when state penalty R(s) is −0.04:

Utilities of Sequences

What preferences should an agent have over reward sequences?

More or less? [1,2,2] or [2,3,4]

Now or later? [0,0,1] or [1,0,0]

Discounting

It is reasonable to maximize the sum of rewards

It is also reasonable to prefer rewards now to rewards later

One solution: values of rewards decay exponentially
Discounted utility: U([r0, r1, r2, . . .]) = r0 + γr1 + γ2r2 + . . .

Discounting

How to discount?
Each time we descend a level, we multiply in the discount once

Why discount?
Sooner rewards probably have higher utility than later rewards
Also helps our algorithms converge

Example: discount of 0.5
U([1,2,3]) = 1 * 1 + 0.5 * 2 + 0.25 * 3
U([1,2,3]) < U([3,2,1])

Stationary Preferences

Theorem: if we assume stationary preferences:

[a1, a2, . . .] ≻ [b1, b2, . . .]⇔ [r , a1, a2, . . .] ≻ [r , b1, b2, . . .]

Then: there are only two ways to define utilities
Additive utility: U([r0, r1, r2, . . .]) = r0 + r1 + r2 + . . .
Discounted utility: U([r0, r1, r2, . . .]) = r0 + γr1 + γ2r2 + . . .

Infinite Utilities
Problem: What if the game lasts forever? Do we get infinite
rewards?

Solutions:
Finite horizon: (similar to depth-limited search)

Terminate episodes after a fixed T steps (that is, life)
Gives nonstationary policies (π depends on time left)

Discounting: use 0 < γ < 1

U([r0, . . . , r∞]) =
∞∑

t=0
γtrt ≤

Rmax
1− γ

Smaller γ means smaller “horizon”

Absorbing state: guarantee that for every policy, a terminal
state will evantually be reached

Recap: Defining MDPs

A Markov Decision Processes:
Set of states S
Start state s0
Set of actions A
Transitions P(s ′ | s, a) (or T (s, a, s ′))
Rewards R(s, a, s ′) (and discount γ)

MDP quantities so far:
Policy = choice of action for each state
Utility = sum of (discounted) rewards

Optimal Quantities

The value (utility) of a state s:

V ∗(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s, a):

Q∗(s, a) = expected utility starting out having taken action a
from state s and (thereafter) acting optimally

The optimal policy:

π∗(s) = optimal action from state s

Values of States
Fundamental operation: compute the (expectimax) value of a
state

Expected utility under optimal action
Average sum of (discounted) rewards
This is exactly what expectimax computed

Recursive definition of value:

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) =
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]

V ∗(s) = max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]

MDP Search Trees

We do too much work with expectimax

Potential Problem: States are repeated
Idea: only compute needed quantities once

Potential Problem: Tree goes on forever
Idea: do a depth-limited computation, but with increasing
depths until change is small
Note: deep parts of the tree eventually do not matter if γ < 1

Time-Limited Values

Key idea: time-limited values

Define Vk(s) to be the optimal value of s if the game ends in k
more time steps

Equivalently, it is what a depth-k expectimax would give from s

Value Iteration
Start with V0(s) = 0): no time steps left means an expected
reward sum of zero

Given a vector of Vk(s) values, do one ply of expectimax from
each state:

Vk+1(s)← max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]
Repeat until convergence

Complexity of each iteration O(S2A)

Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before the values do

Convergence

How do we know the Vk vectors will converge?

Case 1: If the tree has a maximum depth M, then VM holds
the actual untruncated values

Case 2: If the discount is less than 1
Sketch: for any state Vk and Vk+1 can be viewed as depth
k + 1 expectimax results in nearly identical search trees
The difference is that on the bottom layer, Vk+1 has actual
rewards while Vk has zeros
That last layer is at best all RMAX and at worst RMIN
But, everything is discounted by γk that far out
So, Vk and Vk+1 are at most γkmax |R| different
So, as k increases, the values converge

Recap: Defining MDPs

A Markov Decision Processes:
Set of states S
Start state s0
Set of actions A
A set of actions ainA
Transitions P(s ′ | s, a) (or T (s, a, s ′))
Rewards R(s, a, s ′) (and discount γ)$

MDP quantities so far:
Policy = choice of action for each state
Utility = sum of (discounted) rewards
Values = expected future utility from a state (max node)
Q-Values = expected future utility from a q-state (chance node)

The Bellman Equations
Definition of “optimal utility” via expectimax recurrence gives a
simple one-step lookahead relationship amongst optimal utility
values

V ∗(s) = max
a

Q∗(s, a)

Q∗(s, a) =
∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]

V ∗(s) = max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]
These are the Bellman equations and they characterize optimal
values in a way that we will use repeatedly

Value Iteration

The Bellman equations characterize the optimal values

V ∗(s) = max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]
Value iteration computes the optimal values

Vk+1(s)← max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γVk(s ′)

]
Value iteration is just a fixed point solution method

the Vk vectors are also interpretable as time-limited values

Fixed Policies

Expectimax trees max over all actions to compute optimal
values

If we fixed some policy π(s), then the tree would be simpler,
that is, only one action per state

But, the tree’s value would depend on which policy we fixed

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

Define the utility of a state s under a fixed policy π

Recursive relation (one-step look-head / Bellman equations):

V π(s) =
∑
s′

T (s, a, s ′)
[
R(s, π(s), s ′) + γV π(s ′)

]

Policy Evaluation

How do we calculate the V s for a fixed policy π?

Idea 1: turn recursive Bellman equations into updates (like
value iteration)

V π
0 (s) = V π

k+1(s)←
∑
s′

T (s, a, s ′)
[
R(s, π(s), s ′) + γV π(s ′)

]

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a
linear system

Computing Actions from Values

Let us assume we have the optimal values V ∗(s)

How should we act? (not obvious)

We need to do a mini-expectimax (one step)

π∗(s) = arg max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]

This is called policy extraction, since it gets the policy implied
by the values

Computing Actions from Values

Let us assume we have the optimal q-values

How should we act? (trivial to decide)

π∗(s) = arg max
a

Q∗(s, a)

Important lesson: actions are easier to select from q-values
than values

Problems with Value Iteration

Value iteration repeats the Bellman updates

Vk+1(s)← max
a

∑
s′

T (s, a, s ′)
[
R(s, a, s ′) + γV ∗(s ′)

]

Problem 1: it is slow, O(S2A) per iteration

Problem 2: the “max” at each state rarely changed

Problem 3: the policy often converges long before the values

Comparison
Both value iteration and policy iteration compute the same
thing (all optimal values)

In value iteration:
Every iteration updates both the values and (implicitly) the
policy
We do not track the policy, but taking the max over the actions
implicitly recomputes it

In policy iteration:
We do several passes that update the utilities with fixed policy
(each pass is fast because we consider only one action, not all
of them)
After the policy is evaluated, a new policy is chosen (slow like
value iteration)
The new policy will be better (or we are done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to. . .
Compute optimal values: use value iteration or policy iteration
Compute values for a particular policy: use policy evaluation
Turn your values into a policy: use policy extraction (one-step
lookahead)

These all look the same
They basically are – they are all variations of Bellman updates
They all use one-step lookahead expectimax fragments
They differ only in whether we plug in a fixed policy or max
over actions

