Games

CSC 548, Artificial Intelligence II

Chance/Non-determinism in Games

- Approaches such as minimax are only appropriate for deterministic games.
- Some games have a element of randomness, often imparted via dice or shuffling.
- Considering games of chance
 - more realistic in the sense that life is not deterministic
 - more complicated which allows us to examine additional search techniques

Example: Backgammon

■ Basic idea: move your pieces around the board and then off; available moves are determined by rolling two dice.

Example: Backgammon

- If we know the dice rolls, then it is straightforward to get the next states
- For example, white rolls a 5 and a 6 the possible moves are:
 - **(7-2, 7-1)**
 - **(17-12, 17-11),**
 - **.** . . .

Searching with Chance (Backgammon)

- We know there are 36 different dice rolls (21 unique)
- Idea: insert a "chance" layer between each ply with a branching factor of 21
 - Note: this drastically increases the branching factor (by a factor of 21!)
- Associate a probability with each chance branch
 - each double has a probability of 1/36 and all others have a probability of 1/18
- In general, the probabilities are easy to calculate

Example Search Tree

Expected Minimax Value

- Rather that the actual value, we calculate the expected value based on the probabilities
- Evaluation of a chance node: $\sum_{successors(s)} p(s) * v(s)$

Chance and Evaluation Functions

- In the case of expected minimax value the magnitude of value matters, not just the ordering.
- That is, the behavior is only preserved by a positive linear transformation of the evaluation function

Games with Chance

- Given a branching factor b and a chance factor n, the search runtime becomes $\mathcal{O}((nb)^m)$
- For this reason many games of chance do not use much search
 - Example: backgammon frequently only looks ahead 3-ply
- Instead, evaluation functions play a more important roll
 - Example: TD-Gammon learned an evaluation function by playing itself over a million times

Partially Observable Games

- In many games we do not have all the information about the world
 - poker
 - bridge
 - scrabble
 - Kreigspiel
- Challenges
 - The state space can be huge
 - The minimax assumption is probably not true
 - May make move just to explore

Modern Heuristic Search Components

- Search algorithm
- Evaluation function, heuristic
- Simulation
- Combining all three is relatively new

Example: Go

- The minimax algorithm is not effective for the game of Go.
- Reasons:
 - Huge state space
 - average branching factor approximately 250
 - average game length (tree depth) greater than 250
 - No good evaluation function (until recently)

Monte Carlo Simulation

- Do not need an evaluation function
- Process:
 - Simulate the game using random moves
 - Score the game at the end
 - Use that as the evaluation
- Making random moves appears bad, but tends to work for some games
 - Random moves often preserve some difference between a good position and a bad one

Basic (Pure) Monte Carlo Search

- Play many random games starting with each possible move
- 2 Keep winning statistics for each move
- 3 Play the move with the best winning percentage

Monte Carlo Tree Search

- Idea: use results of simulations to guide the growth of the game tree
- Exploitation: focus on promising moves
- Exploration: focus on moves where uncertainty about evaluation is high

Monte Carlo Tree Search

- Monte Carlo Tree Search (MCTS) builds a search tree node-by-node with the following steps:
 - Selection: select a leaf node starting from the root node that has a potential child from which no simulation has yet been initiated
 - 2 Expansion: if the selected node is not a terminal node, then create one or more child nodes and select one
 - 3 Simulation (rollout): run a simulated playout from the selected child node until a result is achieved
 - 4 Backpropagation: Update the current move sequence with the simulation result

Monte Carlo Tree Search Example

Monte Carlo Tree Search Algorithm

```
function MONTE-CARLO-TREE-SEARCH(state) returns an action
    tree ← NODE(state)
while IS-TIME-REMAINING() do
    leaf ← SELECT(tree)
    child ← EXPAND(leaf)
    result ← SIMULATE(child)
    BACK-PROPAGATE(result, child)
return the move in ACTIONS(state) whose node has highest number of playouts
```

Upper Confidence Bound

An effective selection policy is called "upper confidence bounds applied to trees" which ranks each possible move based on the formula

$$UCB1(n) = \underbrace{\frac{U(n)}{N(n)}}_{exploitation} + C \underbrace{\sqrt{\frac{In \ N(parent(n))}{N(n)}}_{exploration}}_{exploration}$$

where U(n) is the utility of node n, N(n) is the number of playouts through node n and C is a constant that balances exploration and exploitation (often set to $\sqrt{2}$)

Monte Carlo Tree Search Comments

- Successful in games and in probabilistic planning
 - Backgammon, Go, General Game Playing, ...
 - Similar methods work in multiplayer games, planning, energy resource allocation, . . .
- Scales to parallel machines
- Still poorly understood as to why it works so well