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Probability of an Event
Pierre-Simon Laplace’s classical theory of probability:

Definition of terms:
An experiment is a procedure that yields one of a given set of
possible outcomes.

The sample space of the experiment is the set of possible
outcomes.

An event is a subset of the sample space.

The probability of an event:
If S is a finite sample space of equally likely outcomes, and E is
an event, that is, a subset of S, then the probability of E is
p(E ) = |E |/|S|

For every event E , we have 0 ≤ p(E ) ≤ 1. This follows directly
from the definition because 0 ≤ p(E ) = |E |/|S| ≤ |S|/|S| ≤ 1,
since 0 ≤ |E | ≤ |S|.



Applying Laplace’s Definition

Example: An urn contains four blue balls and five red balls.
What is the probability that a ball chosen from the urn is blue?

Solution: The probability that the ball is chosen is 4/9 since
there are nine possible outcomes, and four of these produce a
blue ball.

Example: What is the probability that when two dice are
rolled, the sum of the numbers on the dice is 7?

Solution: By the product rule, there are 62 = 36 possible
outcomes. Six of these sum to 7. Hence, the probability of
obtaining a 7 is 6/36 = 1/6.



Applying Laplace’s Definition

Example: In a lottery, a player wins a large prize when they
pick four digits that match, in correct order, four digits selected
by a random mechanical process. What is the probability that
a player wins the prize?

Solution: By the product rule, there are 104 = 10, 000 ways to
pick four digits. Since there is only one way to pick the correct
digits, the probability of winning the large prize is
1/10, 000 = 0.0001.



Applying Laplace’s Definition

Example: In a lottery, a player wins a small prize when they
pick three digits that match from four digits selected by a
random mechanical process. What is the probability that a
player wins the prize?

Solution: If exactly three digits are matched, one of the four
digits must be incorrect and the other three digits must be
correct. For the digit that is incorrect, there are 9 possible
choices. Hence, by the sum rule there are a total of 36 possible
ways to choose four digits that match exactly three of the
winning four digits. The probability of winning the small prize
is 36/10, 000 = 0.0036



Applying Laplace’s Definition

Example: There are many lotteries that award prizes to people
who correctly choose a set of six numbers out of the first n
positive integers, where n is usually between 30 and 60. What
is the probability that a person picks the correct six numbers
out of 40?

Solution: The number of ways to choose six numbers out of
40 is C(40, 6) = 3, 838, 380. Hence, the probability of picking a
winning combination is 1/3, 838, 380 ≈ 0.00000026.



The Probability of Complements and
Unions of Events

Theorem 1: Let E be an event in sample space S. The
probability of the event E = S − E , the complementary event
of E , is given by

p(E ) = 1 − p(E )

Proof: Using the fact that |E | = |S| − |E |,

p(E ) = |S| − |E |
|S|

= 1 − |E |
|S|

= 1 − p(E )



The Probability of Complements and
Unions of Events

Example: A sequence of 10 bits is chosen randomly. What is
the probability that at least one of these bits is 0?

Solution: Let E be the event that at least one of the 10 bits is
0. Then E is the event that all of the bits are 1. The size of
the sample space S is 210. Hence,

p(E ) = 1 − p(E ) = 1 − |E |
|S|

= 1 − 1
1024 = 1023

1024



The Probability of Complements and
Unions of Events

Theorem 2: Let E1 and E2 be events in sample space S. Then

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2)

Proof: Using the inclusion-exclusion formula, it follows that

p(E1 ∪ E2) = |E1 ∪ E2|
|S|

= |E1| + |E2| − |E1 ∩ E2|
|S|

= |E1|
|S|

+ |E2|
|S|

− |E1 ∩ E2|
|S|

= p(E1) + p(E2) − p(E1 ∩ E2)



The Probability of Complements and
Unions of Events

Example: What is the probability that a positive integer
selected at random from the set of positive integers not
exceeding 100 is divisible by either 2 or 5?

Solution: Let E1 be the event that the integer is divisible by 2
and E2 be the event that it is divisible by 5. Then the event
that the integer is divisible by 2 or 5 is E1 ∪ E2 and E1 ∩ E2 is
the event that is is divisible by 2 and 5. It follows that

p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2)

= 50
100 + 20

100 − 10
100 = 3

5



Monty Hall Puzzle

Example: You are asked to select one of the three doors to
open. There is a large prize behind one of the doors and if you
select that door, you win the prize. After you select a door, the
game show host opens one of the non-winning doors and gives
you the opportunity to switch your selection. Should you
switch?

Solution: You should switch. The probability that your initial
pick is correct is 1/3. This is the same whether or not you
switch doors. But, the game show host always opens a door
that does not have the prize, so if you switch, the probability of
winning will be 2/3 because you win if your initial pick was not
the correct door and the probability that your initial pick was
wrong is 2/3.



Assigning Probabilities

Laplace’s definition assumes that outcomes are equally likely,
but we can introduce a more general definition of probability
that avoids this restriction.

Let S be a sample space of an experiment with a finite number
of outcomes. We assign a probablility p(s) to each outcome s
so that

i . 0 ≤ p(s) ≤ 1, ∀s ∈ S
ii .

∑
s∈S

p(s) = 1

The function p from the set of all outcomes in the sample
space S is called a probablility distribution.



Assigning Probabilities

Example: What probabilities should we assign to the outcomes
H(heads) and T (tails) when a fair coin is flipped?

Solution: For a fair coin we have p(H) = p(T ) = 1/2

Example: What probabilities should be assigned to these
outcomes when the coin is biased so that heads comes up twice
as often as tails?

Solution: For a biased coin we have p(H) = 2p(T ). Because
p(H) + p(T ) = 1, it follows that 2p(T ) + p(T ) = 3p(T ) = 1.
Hence, p(T ) = 1/3 and p(H) = 2/3.



Uniform Distribution

Definition: Suppose that S is a set with n elements. The
uniform distribution assigns the probability 1/n to each element
of S.

Example: Consider again the coin flipping example, but with a
fair coin. Now p(H) = p(T ) = 1/2.



Probability of an Event

Definition: The probability of an event E is the sum of the
probabilities of the outcomes in E .

p(E ) =
∑
s∈E

p(s)

Note that now no assumption is being made about the
distribution.



Example

Example: Suppose that a die is biased so that 3 appears twice
as often as each other number, but that the other five
outcomes are equally likely. What is the probability that an odd
number appears when we roll this die?

Solution: We want the probability of the event E = {1, 3, 5}.
We have p(3) = 2/7 and
p(1) = p(2) = p(4) = p(5) = p(6) = 1/7. Hence,
p(E ) = p(1) + p(3) + p(5) = 1/7 + 2/7 + 1/7 = 4/7.



Probabilities of Complements and Unions
of Events

Complements: p(E ) = 1 − p(E ) still holds. Since each
outcome is either E or E , but not both,∑

s∈S
p(s) = 1 = p(E ) + p(E ).

Unions: p(E1 ∪ E2) = p(E1) + p(E2) − p(E1 ∩ E2) also still
holds under the new definition.



Combinations of Events

Theorem: If E1, E2, . . . is a sequence of pairwise disjoint
events in a sample space S, then

p
(⋃

i
Ei

)
=
∑

i
p(Ei)



Conditional Probability

Definition: Let E and F be events with p(F ) > 0. The
conditional probability of E given F , denoted by p(E | F ),

p(E | F ) = p(E ∩ F )
p(F )



Conditional Probability Example

Example: A bit string of length four is generated at random so
that each of the 16 bit strings of length 4 is equally likely.
What is the probablility that it contains at least two
consecutive 0s, given that its first bit is 0?

Solution: Let E be the event that the bit string contains at
least two consecutive 0s, and F be the event that the first bit is

0 Since E ∩ F = {0000, 0001, 0010, 0011, 0100},
p(E ∩ F ) = 5/16. Also because 8 bit strings of length eight
start with a 0, p(F ) = 8/16 = 1/2. Hence,

p(E | F ) = p(E ∩ F )
p(F ) = 5/16

1/2 = 5
8 .



Conditional Probability Example

Example: What is the conditional probability that a family
with two children has two boys, given that they have at least
one boy? Assume that each of the possibilities BB, BG , GB,
and GG is equally likely where B represents a boy and G
represents a girl.

Solution: Let E be the event that the family has two boys and
let F be the event that the family has at least one boy. Then
E = {BB}, F = {BB, BG , GB}, and E ∩ F = {BB}. It follows
that p(F ) = 3/4 and p(E ∩ F ) = 1/4. Hence,

p(E | F ) = p(E ∩ F )
p(F ) = 1/4

3/4 = 1
3 .



Independence

Definition: The events E and F are independent if and only if
p(E ∩ F ) = p(E )p(F ).



Independence Example

Example: Suppose E is the event that a randomly generated
bit string of length four begins with a 1 and F is the event that
this bit string contains an even number of 1s. Are E and F
independent if the 16 bit strings of length four are equally
likely?

Solution: There are eight bit strings of length four that begin
with a 1, and eight bit strings of length four that contain an
even number of 1s. Since the number of bit strings of length 4
is 16, p(E ) = p(F ) = 8/16 = 1/2. Also since
E ∩ F = {1111, 1100, 1010, 1001}, p(E ∩ F ) = 4/16 = 1/4.
We conclude that E and F are independent because
p(E ∩ F ) = 1/4 = (1/2)(1/2) = p(E )p(F ).



Independence Example

Example: Assume (as in the previous example) that each of
the four ways a family can have two children
(BB, GG , BG , GB) is equally likely. Are the events E , that a
family with two children has two boys, and F , that a family
with two children has at least one boy, independent?

Solution: Because E = {BB}, p(E ) = 1/4. We saw previously
that p(F ) = 3/4 and p(E ∩ F ) = 1/4. The events E and F are
not independent since p(E )p(F ) = 3/16 ̸= 1/4 = p(E ∩ F ).



Pairwise and Mutual Independence

Definition: The events E1, E2, . . . , En are pairwise independent
if and only if p(Ei ∩ Ej) = p(Ei)p(Ej) for all pairs i and j with
i ≤ j ≤ n.
The events are mutually independent if
p(Ei1 ∩ Ei2 ∩ · · · ∩ Eim) = p(Ei1)p(Ei1) · · · p(Eim) whenever
ij , j = 1, 2, . . . , m, are integers with 1 ≤ i1 < i2 < · · · < im ≤ n
and m ≥ 2.



Bayes’ Theorem

Bayes’ Theorem: Suppose that E and F are events from a
sample space S such that p(E ) ̸= 0 and p(F ) ̸= 0. Then:

p(F | E ) = p(E |F )p(F )
p(E |F )p(F ) + p(E | F )p(F )



Bayes’ Theorem

Example: We have two boxes. The first box contains two
green balls and seven red balls. The second contains four green
balls and three red balls. Bob selects one of the boxes at
random. Then he selects a ball from that box at random. If he
has a red ball, what is the probability that he selected a ball
from the first box?

Solution: Let E be the event that Bob has chosen a red ball
and F be the event that Bob has chosen from the first box. By
Bayes’ theorem, the probability that Bob has picked the first
box is

p(F | E ) = (7/9)(1/2)
(7/9)(1/2) + (3/7)(1/2) = 7/18

38/63 = 49
76



Applying Bayes’ Theorem

Example: Suppose that one person in 100,000 has a particular
disease. There is a test for the disease that gives a positive
result 99% of the time when given to someone with the disease.
When given to someone without the disease, 99.5% of the time
it gives a negative result Find:

the probability that a person who tests positive has the disease.

the probability that a person who tests negative does not have
the disease.



Applying Bayes’ Theorem

Solution: Let D be the event that the person has the disease,
and E be the event that this person tests positive. We need to
compute p(D | E ) from p(D), p(E | D) and p(D).

p(D) = 1/100, 000 = 0.000001
p(D) = 1 − 0.00001 = 0.99999
p(E | D) = 0.99
p(E | D) = 0.005

p(D | E ) = (0.99)(0.000001)
(0.99)(0.000001) + (0.005)(0.99999) ≈ 0.002



Applying Bayes’ Theorem

Solution: If the test result is negative:

p(D) = 1/100, 000 = 0.000001
p(D) = 1 − 0.00001 = 0.99999
p(E | D) = 0.99
p(E | D) = 0.995

p(D | E ) = (0.995)(0.99999)
(0.995)(0.99999) + (0.01)(0.00001) ≈ 0.99999999



Generalized Bayes’ Theorem

Generalized Bayes’ Theorem: Suppose that E is an event
from a sample space S and that F1, F2, . . . , Fn are mututally
exclusive events such that

n⋃
i

Fi = S. Assume that p(E ) ̸= 0 for
i = 1, 2, . . . , n. Then

p(Fj | E ) = p(E | Fj)p(Fj)∑n
i=1 p(E | Fi)p(Fi)



Bayesian Spam Filters

How do we develop a tool for determining whether an email is
likely to be spam?

If we have an initial set B of spam messages and a set G of
non-spam messages, we can use this information along with
Bayes’ theorem to predict the probability that a new email
message is spam.

We look at a particular word w , and count the number of times
that it occurs in B and in G , nB(w) and nG(w)

The estimated probability that a spam message contains w is
p(w) = nB(w)/|B|

The estimated probability that a non-spam message contains w
is q(w) = nG(w)/|G |



Bayesian Spam Filters

Let S be the event that the message is spam, and E be the
event that the message contains the word w .

Using Bayes’ Theorem:

p(S | E ) = p(E | S)p(S)
p(E | S)p(S) + p(E | S)p(S)

p(S | E ) = p(E | S)
p(E | S) + p(E | S)

, Assume p(S) = 1/2

r(w) = p(w)
p(w) + q(w) , Use estimates of p(E | S) and (E | S)



Bayesian Spam Filters

Example: We find that the word “Rolex” occurs in 250 out of
2000 spam messages and occurs 5 out of 1000 non-spam
messages. Estimate the probability that an incoming message
is spam.

Solution: p(Rolex) = 250/2000 = 0.125 and
q(Rolex) = 5/1000 = 0.005.

r(Rolex) = p(Rolex)
p(Rolex) + q(Rolex) = 0.125

0.125 + 0.005 ≈ 0.962



Random Variables

Definition: A random variable is a function from the sample
space of an experiment to the set of real numbers. That is, a
random variable assigns a real number to each possible
outcome.



Random Variables

Definition: The distribution of a random variable X on a
sample space S is the set of pairs (r , p(X = r)) for all
r ∈ X (S), where p(X = r) is the probability that X takes the
value r .



Random Variables

Example: Suppose that a coin is flipped three times. Let X (t)
be the random variable that equals the number of heads that
appear when t is the outcome. Then X (t) takes on the
following values:
X (HHH) = 3
X (TTT ) = 0
X (HHT ) = X (HTH) = X (THH) = 2
X (TTH) = X (THT ) = X (HTT ) = 1.
Each of the eight possible outcomes has a probability 1/8. So,
the distribution of X (t) is
p(X = 3) = 1/8, p(X = 2) = 3/8, p(X = 1) = 3/8, and
p(X = 0) = 1/8.



Expected Value

Definition: The expected value (or expectation or mean) of
the random variable X (s) on the sample space S is equal to

E (X ) =
∑
x∈S

p(s)X (s)



Expected Value

Example: Let X be the number that comes up when a fair die
is rolled. What is the expected value of X?

Solution: The random variable X takes the values 1,2,3,4,5
and

6 Each has a probability of 1/6. It follows that:

E (X ) = 1
6 · 1 + 1

6 · 2 + · · · + 1
6 · 6 = 21

6 = 7
2



Expected Value

Theorem: If X is a random variable and p(X = r) is the
probability that X = r , so that

p(X = r) =
∑

s∈S, X(s)=r
p(s)

then
E (X ) =

∑
r∈X(S)

p(X = r)r



Independent Random Variables

Definition: The random variables X and Y on a sample space
S are independent if

p(X = r1 ∧ Y = r1) = p(X = r1)p(Y = r2)

Theorem: If X and Y are independent variables on a sample
space S, then E (XY ) = E (X )E (Y )



Variance

Definition: The deviation of X at s ∈ S is X (s) − E (X ), the
difference between the value of X and the mean of X .

Definition: Let X be a random variable on the sample space S.
The variance of X , denoted by V (X ) is

V (X ) =
∑
s∈S

(X (s) − E (X ))2p(s)

Theorem: If X is a random variable on a sample space S, then
V (X ) = E (X 2) − E (X )2.



Variance

Example: What is the variance of the random variable X ,
where X is the number that comes up when a fair die is rolled?

Solution: We have V (X ) = E (X 2) − E (X )2. From the
previous example, we know that E (X ) = 7/2. To find E (X 2)
note that X 2 takes the values i2 for i = 1, 2, . . . , 6, each with a
probability of 1/6. It follows that:

E (X 2) = 1
6
(
12 + 22 + 32 + 42 + 52 + 62

)
= 91

6

Then
V (X ) = 91

6 −
(7

2

)2
= 35

12


