
Bayes’ Nets
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Bayesian Networks

A simple graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

Syntax:
a set of nodes, one per variable
a directed acyclic graph (link ≈ “directly influences”)
a conditional distribution for each node given its parents:
P(Xi | Parents(Xi))

In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over
Xi for each combination of parent values



Example

Topology of network encodes conditional independence
assertions:

Weather is independent of other variables

Toothache and Catch are conditionally independent given
Cavity



Example

I am at work, neighbor John calls to say my alarm is ringing,
but neighbor Mary does not call. Sometimes it is set off by
minor earthquakes. Is there a burglar?

Variables: Burglar , Earthquake, Alarm, JonhCalls, MaryCalls

Network topology reflects “causal” knowledge
A burglar can set the alarm off

An earthquake can set the alarm off

The alarm causes Mary to call

The alarm causes John to call



Example Continued



Compactness

A CPT for Boolean Xi with k Boolean parents has 2k rows for
the combinations of parent values

Each row requires one number p for Xi = true (the number for
Xi = false is just 1− p)

If each variable has no more than k parents, the complete
network requires O(n · 2k) numbers

That is, grows linearly with n, vs. O(2n) for the full joint
distribution

For the burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.
25 − 1 = 31)



Global Semantics

“Global” semantics defines the full joint distribution as the
product of the local conditional distributions:
P(x1, . . . , xn) =

∏n
i=1 P(xi | parents(Xi)

Example, Burglary net:
P(j ∧m ∧ a ∧ ¬b ∧ ¬e)
= P(j | a)P(m | a)P(a | ¬b,¬e)P(¬b)P(¬e)
= 0.9× 0.7× 0.001× 0.999× 0.998
≈ 0.00063



Local Semantics
Local semantics: each node is conditionally independent of its
nondescendants given its parent

Theorem: local semantics ↔ global semantics



Markov Blanket
Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents



Constructing Bayesian Networks
Need a method such that a series of locally testable assertions
of conditional independence guarantees the required global
semantics

Choose an ordering of variables X1, . . . , Xn

For i = 1 to n, add Xi to the network and select parents from
X1, . . . , Xi−1 such that
P(Xi | Parents(Xi)) = P(Xi | X1, . . . , Xi−1

This choice of parents guarantees the global semantics:

P(X1, . . . , Xn) =
n∏

i=1
P(Xi | X1, . . . , Xi−1)

=
n∏

i=1
P(Xi | Parents(Xi)



Example
Suppose we choose the ordering M, J , A, B, E

P(J | M) = P(J)?



Example

Suppose we choose the ordering M, J , A, B, E

P(A | J , M) = P(A | J)?

P(A | J , M) = P(A)?



Example

Suppose we choose the ordering M, J , A, B, E

P(B | A, J , M) = P(B | A)?

P(B | A, J , M) = P(B)?



Example

Suppose we choose the ordering M, J , A, B, E

P(E | B, A, J , M) = P(E | A)?

P(E | B, A, J , M) = P(E | A, B)?



Example

Deciding conditional independence is hard in noncausal
directions

Assessing conditional probabilities is hard in noncausal
directions

Network is less compact: 1 + 2 + 4 + 2 + 4 = 13 numbers
needed



Example: Car Diagnosis
Initial evidence: car will not start

Testable variables (green), “broken, so fix it” variables (orange)

Hidden variables (gray) ensure sparse structure, reduce
parameters



Example: Car Insurance



Compact Conditional Distributions

CPT grows exponentially with number of parents

CPT becomes infinite with continuous valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f (Parents(X )) for some function f

Examples:
NorthAmerican↔ Canadian ∨ US ∨Mexican
∂Level

∂t = inflow + precipitation - outflow - evaporation



Compact Conditional Distributions
Noisy-OR distributions model multiple noninteracting causes

Parents U1, . . . , Uk include all causes

Independent failure probability qi for each cause alone
P(X | U1, . . . , Uj ,¬Uj+1, . . . ,¬Uk) = 1−

∏j
i=1 qi

Cold Flu Malaria P(Fever) P(¬Fever)

F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.2 = 0.2 × 0.1
T F F 0.4 0.6
T F T 0.4 0.06 = 0.6 × 0.1
T T F 0.88 0.12 = 0.6 × 0.2
T T T 0.988 0.12 = 0.6 × 0.2 × 0.1

Number of parameters linear in number of parents



Hybrid (Discrete + Continuous) Networks
Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization – possibly large errors large CPTs

Option 2: finitely parameterized canonical families

Continuous variable, discrete + continuous parents (e.g. Cost)

Discrete variable, continuous parents (e.g. Buys?)



Continuous Child Variables
Need one conditional density function for child variable given
continuous parents, for each possible assignment to discrete
parents

Most common is the linear Gaussian model, for example

P(Cost = c | Harvest = h, Subsidy? = true)
= N (ath + bt , σt)(c)

= 1
σt
√

2π
exp

(
−1

2

(c − (ath + bt)
σt

)2)

Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range but works if
the likely range of Harvest is narrow



Continuous Child Variables

All continuous network with linear Gaussian distributions → full
joint distribution is a multivariate Gaussian

Discrete + continuous linear Gaussian network is a conditional
Gaussian network, that is, a multivariate Gaussian over all
continuous variables for each combination of discrete values



Discrete Variable with Continuous Parents
Probability of Buys? given Cost should be a “soft” threshold

Probit distribution uses integral of Gaussian

Φ(x) =
∫ x

−∞
N (0, 1)(x)dx

P(Buys? = true | Cost = c) = Φ
(−c + µ

σ

)



Why the Probit?

It is sort of the right shape

Can view as hard threshold whose location is subject to noise



Discrete Variable Continued
Sigmoid (or logit) distribution also used in neural networks:

P(Buys? = true | Cost = c) = 1
1 + exp

(
−2−c+µ

σ

)
Sigmoid has a similar shape to probit, but much longer tails:



Inference Tasks

Simple queries: compute posterior marginal P(Xi | E = e)

Conjunctive queries:
P(Xi , Xj | E = e) = P(Xi | E = e)P(Xj | Xi , E = e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for
P(outcome | action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?



Inference by Enumeration
Slightly intelligent way to sum out variables from the joint
without actually constructing its explicit representation

Simple query on the burglary network:

P(B | j , m) = P(B, j , m)
P(j , m)

= αP(B, j , m)
= α

∑
e

∑
a

P(B, e, a, j , m)

= α
∑

e

∑
a

P(B)P(e)P(a | B, e)P(j | a)P(m | a)

= αP(B)
∑

e
P(e)

∑
a

P(a | B, e)P(j | a)P(m | a)

Recursive depth-first search enumeration: O(n) space, O(dn)
time



Enumeration Algorithm
function Enumeration-Ask(X , e, bn)

Q(X )← a distribution over X , initially empty
for each value xi of X do

extend e with value xi for X
Q(xi)← Enumerate-All(Vars[bn], e)

return Normalize(Q(X ))
function Enumerate-All(vars, e)

if Empty?(vars) then
return 1.0

Y ← First(vars)
if Y has value y in e then

return P(y | Pa(Y ) × Enumerate-All(Rest(vars), e)
else

return
∑

y P(y | Pa(Y )) ×
Enumerate-All(Rest(vars), ey )



Evaluation Tree

Enumeration is inefficient: repeated computation, for example,
P(j | a)P(m | a) is computed for each value of e



Inference by Variable Elimination
Variable elimination: carry out summations right-to-left, storing
intermediate results (factors) to avoid recomputation

P(B | j , m)
= αP(B)

∑
e

P(e)
∑

a
P(a | B, e)P(j | a)P(m | a)

= αP(B)
∑

e
P(e)

∑
a

P(a | B, e)P(j | a)fM(a)

= αP(B)
∑

e
P(e)

∑
a

P(a | B, e)fJ(a)fM(a)

= αP(B)
∑

e
P(e)

∑
a

fA(a, b, e)fJ(a)fM(a)

= αP(B)
∑

e
P(e)fĀJM(b, e)

= αP(B)fĒ ĀJM(b)
= αfB(b)fĒ ĀJM(b)



Variable Elimination: Basic Operations
Summing out a variable from a product of factors: move any
constant factors outside the summation and add up
submatrices in pointwise product of remaining factors∑

x
f1 × · · · × fk

= f1 × · · · × fi
∑

x
fi+1 × · · · × fk

= f1 × · · · fi × fX̄

assuming f1, . . . , fi do not depend on X

Pointwise product of factors f1 and f2:
f1(x1, . . . , xj , y1, . . . , yk)× f2(y1, . . . , yk , z1, . . . , zl) =
f (x1, . . . , xj , y1, . . . , yk , z1, . . . , zl)

Example: f1(a, b)× f2(b, c) = f (a, b, c)



Variable Elimination Algorithm

function Elimination-Ask(X , e, bn)
factors ← []
vars ← Reverse(Vars([bn])
for each var in vars do

factors ← [ Make-Factor(var , e) | factors]
if var is a hidden variable then

factors ← Sum-Out(vars, factors)
return Normalize(Pointwise-Product(factors))



Irrelevant Variables

Consider the query P(JohnCalls | Burglary = true)
P(J | b) =
αP(b)

∑
e P(e)

∑
a P(a | b, e)P(J | a)

∑
m P(m | a)

The sum over m is identically 1; M is irrelevant to the query

Theorem: Y is irrelevant unless Y ∈ Ancestors({X} ∪ E )

Here, X = JohnCalls, E = {Burglary}, and
Ancestors({X} ∪ E ) = {Alarm, Earthquake} so MaryCalls is
irrelevant



Irrelevant Variables

Definition: moral graph of Bayes net – marry all parents and
drop arrows

Definition: A is m-separated from B by C iff separated by C in
the moral graph

Theorem: Y is irrelevant if m-separated from X by E

Example: For P(JohnCalls | Alarm = true), both Burglary and
Earthquake are irrelevant



Complexity of Exact Inference

Singly connected networks (or polytrees):
any two nodes are connected by at most one (undirected) path

time and space cost of variable elimination are O(dkn)

Multiply connected networks:
can reduce to 3SAT to exact inference ⇒ NP-hard

equivalent to counting 3SAT models ⇒ P-complete



Inference by Stochastic Simulation

Basic idea:
1 Draw N samples from a sampling distribution S

2 Compute an approximate posterior probability P̂

3 Show this converges to the true probability P

Outline
Sampling from an empty network

Rejection sampling: reject samples that disagree with the
evidence

Likelihood weighting (LW): use evidence to weight samples

Markov chain Monte Carlo (MCMC): sample from a stochastic
process whose stationary distribution is the true posterior



Sampling from an Empty Network

function Prior-Sample(bn)
x ← an event with n elements
for i = 1 to n do

xi ← a random sample from P(Xi | parents(Xi))
given the values of Parents(Xi) in x



Example



Example



Example



Example



Example



Example



Example



Sampling from an Empty Network
Continued

Probability the Prior-Sample generates a particular event

SPS(x1, . . . , xn) =
n∏

i=1
P(xi | parents(Xi)) = P(x1, . . . , xn)

that is, the true prior probability

Let NPS(xi , . . . , xn) be the number of samples generated for
event x1, . . . , xn, then we have

lim
N→∞

P̂(x1, . . . , xn) = lim
N→∞

NPS(x1, . . . , xn)
N

= SPS(x1, . . . , xn)
= P(x1, . . . , xn)

Shorthand: P̂(x1, . . . , xn) ≈ P(x1, . . . , xn)



Rejection Sampling

P̂(X | e) estimated from samples agreeing with e

Example: estimate P(Rain | Sprinkler = true) using 100
samples: 27 samples have Sprinkler = true and of these 8 have
Rain = true and 19 have Rain = false.

P̂(Rain | Sprinkler = true) = Normalize(⟨8, 19⟩) =
⟨0.296, 0.704⟩



Analysis of Rejection Sampling

P̂(X | e) = αNPS(X , e)

= NPS(X , e)
NPS(e)

≈ P(X , e)
P(e)

= P(X | e)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables



Likelihood Weighting

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the
evidence



Likelihood Weighting Example



Likelihood Weighting Example



Likelihood Weighting Example



Likelihood Weighting Example



Likelihood Weighting Example



Likelihood Weighting Analysis
Sampling probability for Weighted-Sample is
SWS(z , e) =

∏
i=1 lP(zi | parents(Zi))

Note: pays attention to evidence in ancestors only –
somewhere “in between” prior and posterior distribution

Weight for a given sample z , e is
w(z , e) =

∏m
i=1 P(ei | parents(Ei))

Weighted sampling probability is
SWS(z , e)w(z , e)

=
l∏

i=1
P(zi | parents(Zi))

∏
i=1

mP(ei | parents(Ei))

= P(z , e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates but
performance still degrades with many evidence variables
because few samples have nearly all the total weight



Approximate Inference Using MCMC

“State” of network is current assignment to all variables

Generate next state by sampling one variable given Markov
blanket



The Markov Chain
With Sprinkler = true, WetGrass = true, there are four states:

Wander about for a while, average what yo usee



MCMC Example Continued

Estimate P(Rain | Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat; count
the number of times Rain is true and false in the samples.

For example, visit 100 states: 31 have Rain = true, 69 have
Rain = false
P̂(Rain | Sprinkler = true, WetGrass = true) =
Normalize(⟨31, 69⟩) = ⟨0.31, 0.69⟩

Theorem: chain approaches stationary distribution: long-run
fraction of time spent in each state is exactly proportional to
its posterior probability.



Markov Blanket Sampling

Markov blanket of Cloudy is Sprinkler and Rain

Markov blanket of Rain is Cloudy , Sprinkler , and WetGrass

Probability given the Markov blanket is calculated as follows:

P(x ′
i | mb(Xi)) = P(x ′

i | parents(Xi))
∏

Zj ∈Children(Xi )
P(zj | parents(Zj))

Easily implemented in message-passing parallel systems

Main computational problems:
1 Difficult to tell if convergence has been achieved

2 Can be wasteful if Markov blanket is large: P(Xi | mb(Xi)) will
not change much (law of large numbers)



Summary

Bayes nets provide a natural representation for (causally
induced) conditional independence

Topology + CPTs = compact representation for joint
distribution

Generally easy for (non)experts to construct

Canonical distributions (e.g. noisy-OR) = compact
representation of CPTs

Continuous variables → parameterized distributions

Exact inference by variable elimination: NP-hard in general

Approximate inference methods: likelihood weighting and
Markov chain Monte-Carlo sampling


