
The Shell & Scripting
CSC 510

Shells

A shell is a command line interface (CLI) to the operating
system

Common Unix shells
Bourne – sh
Korn – ksh
C shell – csh
Debian Almquist Shell – dash
TC shell – tcsh
Z shell – zsh

Here we will focus on the bash shell, which is one of the most
widely used shells. bash syntax is similar to many other shells.

Command Editing

Some shortcuts (by default emacs based):
ˆE – go to the end of the line
ˆA – go to the beginning of the line
ˆP – steps back through previous command history
ˆR – reverse search command history

Note ˆE (also Ctr-E or <C-E>) indicates control + the ‘e’ key.

If you like vi editing, you can set the shell to vi mode with

set -o vi

History Expansion

!! – entire last command
!:ˆ – first argument from last command
!:$ – last argument from last command
!:n – nth argument from last command
!: – all arguments from last command
!:x-y – arguments in a given range from last command
!<prefix> – most recent previous command starting with
<prefix>

Tab Completion

Pressing the [TAB] key while typing a command will make
bash inspect the input to find a relevant completion
specification (compspec), for example filenames in the current
working directory

You can create custom compspecs with the complete builtin

Example

$ complete -W "foo bar baz" echo
$ echo [TAB][TAB]
bar baz foo
$ echo f[TAB]
foo

Connecting Programs

> – stdout redirection
>> – stdout redirection, append
2> – stderr redirection
>& – redirect both stdout and stderr
< – stdin redirection
| – pipe; connect stdou of one program to stdin of another
program
$(CMD) – command substitution
<(CMD) – process substitution

Variables and Quoting

Variable assignment uses the = operator

Variable reference uses $ prefixed to the variable name

Strings can be single or double quoted, but have different
semantics

single quotes: string literals
double quotes: interpolates variable values

Example (note that # begins a line comment)

foo=bar
echo "$foo" # prints bar
echo '$foo' # prints $foo (literally)

Globbing

Globbing refers to filename expansion with special characters

Wildcards – ? matches a single character and * matches zero
or more characters in a filename

Brace expansion – takes an optional preamble, a series of
comma separated strings in braces, and an optional postscript
and generates a sequence of new strings for each string in the
braces

Example

$ echo a{b,c,d}e
abe ace ade

Environment Variables

When a UNIX process starts, it receives a set of command line
arguments and a set of “environment variables”

The printenv command will display the currently set
environment variables

By convention environment variables are all written in all caps

A variable can be promoted to an environment variable with
the export keyword

Example: make programs that use the EDITOR environment
variable use nano

export EDITOR=nano

Scripting

Shell commands can be written in a file and executed like a
program

The first line in a shell script should be the shebang which
indicates which interpreter to run the script through (in our
case bash)

#!/bin/bash

The script must also have execute permissions set

Special Variables

Bash uses special variables to refer to arguments, error codes,
etc.

Some examples:
$0 – name of the script
$1 to $9 – arguments to the script
$@ – all the arguments
$# – number of arguments
$? – return code of previous command
$$ – process id (PID) of the current script

Control Flow
Bash has selection and iteration constructs (which rely on
Boolean values)

The shell uses the exit codes of programs for Boolean tests: an
exit code of zero is true and non-zero is false

The shell has short circuit operators for || (or) and && (and)

The semicolon is a sequencing operator

Example:

false || echo 'hello' # prints hello
true || echo 'hello' # nothing gets printed
true && echo 'hello' # prints hello
false && echo 'hello' # nothing gets printed
true ; echo 'hello' # prints hello
false ; echo 'hello' # prints hello

Comparison Operators

String Numeric True when

x = y x -eq y x is equal to y
x != y x -neq y x is not equal to y
x < y x -lt y x is less than y

x -leq y x is less than or equal to y
x > y x -gt y x is greater than y

x -geq y x is greater than or equal to y
-n x x is not null
-z x x is null

Note: the < and > operators need to be backslash escaped or
double bracketed to prevent interpretation of file redirection

File Operators

Operator True when

-d file file exists and is a directory
-e file file exists
-f file file exists and is a regular file
-r file user has read permission on file
-s file file exists and is not empty
-w file user has write permission on file
file1 -nt file2 file1 is newer than file2
file1 -ot file2 file1 is older than file2

if . . . else

Syntax

if [<condition>] then
<commands>

elif [<condition>]; then
<commands>

else
<commands>

fi

Note the bracket syntax for conditions must have whitespace
separating the brackets and the condition. The brackets are an
alternative syntax to the test command

for . . . in

Syntax

for <variable name> in <sequence>
do

<commands>
done

<sequence> can be a file expansion, a range with the syntax
{<start>..<stop>..<step>} where <step> is optional, or
an array.

for loop

Syntax

for ((<initialization>; <condition>; <step>))
do

<commands>
done

while loop

Syntax:

while [<condition>]
do

<commands>
done

break and continue

Looping constructs support the break and continue keywords

break – exit out of the loop

continue – restart the loop body with the next iteration

Functions

Function definition syntax

<function name> () {
<commands>
[return <8-bit integer>]

}

Note function arguments are accessed via the special variables,
for example, $1 to $9.

Function call syntax

<function name>

ShellCheck

ShellCheck is a linter for shell scripts

A linter is a program the performs static analysis of script files
in order to find potential errors

You should use ShellCheck when writing your scripts

Job Control

ˆZ – suspend the currently running process

bg – move a suspended process to the background

fg [n] – move a process to the foreground by job number

jobs – list current jobs

Aliases

A shell alias is a custom (usually) shorter form for another
command

Syntax

alias <alias name>="<command> [args...]"

Example:

alias ll="ls -lh"

Dotfiles

Dotfiles are configuration files for programs

Bash related dotfiles
~/.bashrc
~/.bash_profile

Regular Expressions

Many commands and configure files accept regular expressions.

A regular expression (regex) are a pattern matching mechanism
for text (strings)

You can think of a regular expression as a function that takes a
text and a pattern and returns a Boolean value.

Common Special Characters in Regex

Symbol Meaning

. match any character
[chars] match any character in the given set
[ˆchars] match any character not in the given set
ˆ match the beginning of the line
$ match the end of the line
\w match any “word” [A-Za-z0-9_]
\s match any whitespace character
\d match any digit
| match the element on the left or right (alternation)
(expr) groups elements

Common Special Characters in Regex

Symbol Meaning

? match zero or one of preceding element
* match zero or more of the preceding element
+ match exactly one of the preceding element
{ n } match exactly n instances of the preceding element
{ n, } match at least n instances of the preceding element
{ n,m } match any number of instances from n to m

