The Shell & Scripting

CSC 510

Shells

m A shell is a command line interface (CLI) to the operating
system

m Common Unix shells

m Bourne — sh

m Korn — ksh

m C shell - csh

m Debian Almquist Shell — dash
m TC shell - tcsh

m Z shell — zsh

m Here we will focus on the bash shell, which is one of the most
widely used shells. bash syntax is similar to many other shells.

Command Editing

m Some shortcuts (by default emacs based):

m "E — go to the end of the line

m ~A — go to the beginning of the line

m "P — steps back through previous command history
m "R — reverse search command history

m Note "E (also Ctr-E or <C-E>) indicates control + the ‘e’ key.
m If you like vi editing, you can set the shell to vi mode with

set -o vi

History Expansion

I'l — entire last command

I:~ — first argument from last command

I:$ — last argument from last command

I:n — nth argument from last command

I': —all arguments from last command

| :x-y — arguments in a given range from last command
I<prefix> — most recent previous command starting with
<prefix>

Tab Completion

m Pressing the [TAB] key while typing a command will make
bash inspect the input to find a relevant completion
specification (compspec), for example filenames in the current
working directory

m You can create custom compspecs with the complete builtin
m Example

$ complete -W "foo bar baz" echo
$ echo [TAB] [TAB]

bar baz foo

$ echo f[TAB]

foo

Connecting Programs

> — stdout redirection

>> — stdout redirection, append

2> — stderr redirection

>& — redirect both stdout and stderr

< — stdin redirection

| — pipe; connect stdou of one program to stdin of another
program

$(CMD) — command substitution

<(CMD) — process substitution

Variables and Quoting

m Variable assignment uses the = operator
m Variable reference uses $ prefixed to the variable name

m Strings can be single or double quoted, but have different
semantics

m single quotes: string literals
m double quotes: interpolates variable values

m Example (note that # begins a line comment)

foo=bar
echo "$foo" # prints bar
echo '$foo' # prints $foo (literally)

Globbing

m Globbing refers to filename expansion with special characters

m Wildcards — ? matches a single character and * matches zero
or more characters in a filename

m Brace expansion — takes an optional preamble, a series of
comma separated strings in braces, and an optional postscript
and generates a sequence of new strings for each string in the
braces

m Example

$ echo a{b,c,d}e
abe ace ade

Environment Variables

m When a UNIX process starts, it receives a set of command line
arguments and a set of “environment variables”

m The printenv command will display the currently set
environment variables

m By convention environment variables are all written in all caps

m A variable can be promoted to an environment variable with
the export keyword

m Example: make programs that use the EDITOR environment
variable use nano

export EDITOR=nano

Scripting

m Shell commands can be written in a file and executed like a
program

m The first line in a shell script should be the shebang which
indicates which interpreter to run the script through (in our
case bash)

#!/bin/bash

m The script must also have execute permissions set

Special Variables

m Bash uses special variables to refer to arguments, error codes,
etc.

m Some examples:

$0 — name of the script

$1 to $9 — arguments to the script

$@ — all the arguments

$# — number of arguments

$7 — return code of previous command

$$ — process id (PID) of the current script

Control Flow

m Bash has selection and iteration constructs (which rely on
Boolean values)

m The shell uses the exit codes of programs for Boolean tests: an
exit code of zero is true and non-zero is false

m The shell has short circuit operators for || (or) and && (and)
m The semicolon is a sequencing operator
Example:

false || echo 'hello' # prints hello
true || echo 'hello' # nothing gets printed
true && echo 'hello' # prints hello
false && echo 'hello' # nothing gets printed
true ; echo 'hello' # prints hello
false ; echo 'hello' # prints hello

Comparison Operators

String Numeric True when
X=y x-eqy xisequaltoy
x!=y x-neqy xisnotequaltoy
x<y x-lty x is less than y
x -leqy xis less than or equal to y
x>y x-gty X is greater than y
X -geq y X is greater than or equal to y
-n x x is not null
-Z X x is null

Note: the < and > operators need to be backslash escaped or
double bracketed to prevent interpretation of file redirection

File Operators

Operator True when

-d file file exists and is a directory

-e file file exists

-f file file exists and is a regular file

-r file user has read permission on file
-s file file exists and is not empty

-w file user has write permission on file
filel -nt file2 filel is newer than file2

filel -ot file2

filel is older than file2

if ... else

m Syntax

if [<condition>] then
<commands>

elif [<condition>]; then
<commands>

else
<commands>

fi

m Note the bracket syntax for conditions must have whitespace
separating the brackets and the condition. The brackets are an
alternative syntax to the test command

for ... in

Syntax

for <variable name> in <sequence>
do

<commands>
done

<sequence> can be a file expansion, a range with the syntax
{<start>..<stop>..<step>} where <step> is optional, or
an array.

for loop

m Syntax

for ((<initialization>; <condition>; <step>))
do

<commands>
done

while loop

m Syntax:

while [<condition>]
do

<commands>
done

break and continue

m Looping constructs support the break and continue keywords
m break — exit out of the loop

m continue — restart the loop body with the next iteration

Functions

m Function definition syntax

<function name> () {
<commands>
[return <8-bit integer>]

m Note function arguments are accessed via the special variables,
for example, $1 to $9.

m Function call syntax

<function name>

ShellCheck

m ShellCheck is a linter for shell scripts

m A linter is a program the performs static analysis of script files
in order to find potential errors

m You should use ShellCheck when writing your scripts

Job Control

m “Z - suspend the currently running process
m bg — move a suspended process to the background
m fg [n] — move a process to the foreground by job number

m jobs — list current jobs

Aliases

m A shell alias is a custom (usually) shorter form for another
command

m Syntax
alias <alias name>="<command> [args...]"
m Example:

alias 11="1s -1h"

Dotfiles

m Dotfiles are configuration files for programs
m Bash related dotfiles

m ~/.bashrc
m ~/.bash_profile

Regular Expressions

m Many commands and configure files accept regular expressions.

m A regular expression (regex) are a pattern matching mechanism
for text (strings)

m You can think of a regular expression as a function that takes a
text and a pattern and returns a Boolean value.

Common Special Characters in Regex

Symbol Meaning

. match any character

[chars] match any character in the given set
[“chars] match any character not in the given set
- match the beginning of the line

$ match the end of the line

\w match any “word” [A-Za-z0-9_]
\s match any whitespace character
\d match any digit

| match the element on the left or right (alternation)
(expr) groups elements

Common Special Characters in Regex

Symbol Meaning

? match zero or one of preceding element

* match zero or more of the preceding element

+ match exactly one of the preceding element

{n} match exactly n instances of the preceding element
{n} match at least n instances of the preceding element
{ n,m?} match any number of instances from n to m

