Linux init

CSC 510

Linux init

- The init process, PID 1, is responsible for ensuring the system runs the correct complement of services and daemons at any given time.
- Common Linux system modes
 - Single-user mode: minimal filesystems mounted, no running services, and a root shell on the console.
 - Multiuser mode: all customary filesystems mounted, all configured network services started, and a GUI window system and login manager.
 - Server mode: similar to multiuser mode, but no GUI systems running.

Some init Setup Tasks

- Set the name of the computer
- Set the time zone
- Check disks with fsck
- Mount filesystems
- Remove old files from /tmp
- Configure network interfaces
- Start daemons and network services

Implementations of init

- "Traditional" init: based on running tiers of shell scripts to initialize the system
- BSD Unix init: a variant of the traditional init
- systemd: a collection of processes for all daemon and state related issues; manages more subsystems than traditional init. (Linux only)

systemd Units and Unit Files

- An entity managed by systemd is called a unit.
- Example units:
 - a service
 - a socket
 - a device
 - a mount point
 - a startup target
 - a timer
- The behavior of each unit is defined is defined by a unit file; which are located in several places:
 - /user/lib/systemd/system
 - /lib/systemd/system
 - /etc/systemd/system
 - /run/systemd/system

Example Unit File

Example

```
[Unit]
Description=fast remote file copy program daemon
ConditionPathExists=/etc/rsyncd.conf
```

```
[Service]
ExecStart=/usr/bin/rsync --daemon --no-detach
```

```
[Install]
WantedBy=multi-user.target
```

 Note: details about unit file syntax are in the systemd.unit man page

The systemctl Command

- systemctl is a command for inspect the status of systemd and make configuration changes.
- The first argument to systemctl is a subcommand
- Examples:
 - systemctl list-units --type=service
 - systemctl list-unit-files --type=service

Common systemctl subcommands

Subcommand	Function
list-unit-files	show installed units
enable <i>unit</i>	enable <i>unit</i> to activate at boot
disable <i>unit</i>	prevent unit from activating at boot
isolate <i>target</i>	changes operating mode to target
start <i>unit</i>	activate unit immediately
stop <i>unit</i>	deactivate unit immediately
restart <i>unit</i>	restart <i>unit</i> immediately
status <i>unit</i>	show <i>unit</i> 's status
kill pattern	send signal to units matching pattern
reboot	reboot computer
daemon-reload	reload unit files and systemd configuration

Unit Status

- The systemctl status command shows the status of a unit file
- Unit file statuses
 - bad a problem with systemd; usually a bad unit file
 - disabled present but not configured to start on boot
 - enabled installed and runnable; will start on boot
 - indirect disabled, but has peers in Also clauses that may be enabled
 - linked unit file available through symbolic link
 - masked logically invisible to systemd
 - static depended on by another unit

Targets

- A systemd target defines a distinct class of units that correspond to common operating modes.
- Some systemd targets:
 - poweroff.target system halt
 - emergency.target bare-bones shell for system recovery
 - rescue.target single-user mode
 - multi-user.target multiuser mode
 - graphical.target multiuser mode with GUI
 - reboot.target system reboot

Unit Dependencies

- systemd has some implicit dependencies and assumptions (see the systemd.unit-type man page) and explicit dependencies declared in the [Unit] section of a unit file.
- Explicit dependencies
 - Wants units that should be coactivated if possible, but are not required
 - Requires strict dependencies; failure of any prerequisite terminates this service
 - Requisite strict dependencies that must be active
 - BindsTo similar to Requires, but more tightly coupled
 - PartOf similar to Requires, but affects only starting and stoppin
 - Conflicts negative dependencies; cannot be coactivated
- A unit's Wants or Requires can be extended with the systemctl add-wants and systemctl add-requires subcommands.

systemd Timers for Periodic Processes

A systemd timer comprises two files:

- A timer unit that describes the schedule and unit to activate
- A service unit that specifies the details of what to run
- Timer types
 - OnActiveSec relative to the time at which the timer itself activated
 - OnBootSec relative to system boot time
 - OnStartupSec relative to the time at which systemd started
 - OnUnitActiveSec relative to the time the specified unit was last active
 - OnUnitInactiveSec relative to the time the specified unit was last inactive
 - OnCalendar specific day and time

Aside: cron

- The cron daemon is the traditional tool for running periodic commands.
- The cron configuration file is called a "crontab" for "cron table"; user crontabs are stored at /var/spool/cron
- The crontab command is used to management crontab files.

Aside: crontab format

Each non-comment line in a crontab has the following syntax

minute hour dom month weekday command

- minute minute of the hour; range 0 59
- hour hour of the day; range 0 23
- dom day of month; range 1 31
- mont month of year; range 1 12
- weekday day of week; range 0 6 (0 = Sunday)
- The time related fields can contain:
 - A star (*) which matches everything
 - A single integer
 - Two integers separated by a dash, matches a range
 - A range followed by a slash and step value
 - A comma-separated list of integers or ranges